Rosetta’s blind date with asteroid Lutetia

Like many first dates, Rosetta will meet Lutetia on a Saturday night, flying to within 3200 km of the space rock. Rosetta started taking navigational sightings of Lutetia at the end of May so that ground controllers can determine any course corrections required to achieve their intended flyby distance.

The close pass will allow around 2 hours of good imaging. The spacecraft will instantly begin beaming the data back to Earth and the first pictures will be released later that evening.

Rosetta flew by asteroid Steins in 2008 and other space missions have encountered a handful of asteroids. Each asteroid has proven to be an individual and Lutetia is expected to continue the trend.

Although recent high resolution ground-based images have given some idea of the overall shape of Lutetia, we have no idea what it looks like in detail. Rosetta will tell us that. Orbiting in the main belt of asteroids between Mars and Jupiter, initially it was thought that Lutetia is around 95 km in diameter but only mildly elliptical. Recent estimates suggest 134 km, with a pronounced elongation. Rosetta will tell us for certain and will also investigate the composition of the asteroid, wherein lies another mystery.

By any measure, Lutetia is quite large. Planetary scientists believe that it is a primitive asteroid left on the shelf for billions of years because no planet consumed it as the Solar System formed. Indeed, most measurements appear to back this picture, making the asteroid out to be a ‘C-type’, which contains primitive compounds of carbon.

However, some measurements suggest that Lutetia is an ‘M-type’, which could mean there are metals in its surface. “If Lutetia is a metallic asteroid then we have found a real winner,” says Rita Schulz, ESA Rosetta Project Scientist.

That is because although metallic asteroids do exist, they are thought to be fragments of the metallic core of larger asteroids that have since been shattered into pieces. If Lutetia is made of metal or even contains large amounts of metal, Dr Schulz says that the traditional asteroid classification scheme will need rethinking. “C-class asteroids should not have metals on their surfaces,” she says.

Asteroid science stands to gain once this observational conundrum is resolved because Rosetta’s data will provide a valuable collection of ‘ground truths’ that can be used to resolve conflicting ground-based observations not just for Lutetia but for other asteroids as well.

For 36 hours around the moment of closest approach, Rosetta will be in almost continuous contact with the ground. The only breaks will come as Earth rotates and engineers have to switch from one tracking station to another.

Good contact is essential because the uncertainties in the asteroid’s position and shape may demand last minute fine-tuning to keep it centred in Rosetta’s instruments during the flyby. “The skeleton of the operation is in place, and we have the ability to update our plans at any time,” says Andrea Accomazzo, ESA Rosetta Spacecraft Operations Manager.

Media Contact

Markus Bauer EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors