Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research by UCR physicists could help develop gamma ray lasers and produce fusion power

03.05.2010
Researchers isolate collection of “pure” or spin polarized positronium atoms for the first time

Positronium is a short-lived system in which an electron and its anti-particle are bound together.

In 2007, physicists at the University of California, Riverside created molecular positronium, a brand-new substance, in the laboratory. Now they have succeeded in isolating for the first time a sample of spin polarized positronium atoms.

Study results appear this week in the journal Physical Review Letters.

Spin is a fundamental and intrinsic property of an electron, and refers to the electron's angular momentum. Spin polarized atoms are atoms that are all in the same spin state. A collection of spin polarized positronium atoms is needed to make a special form of matter, called the Bose-Einstein condensate (BEC). The BEC, predicted in 1924 and created in 1995, allows scientists to study atoms in a unique manner.

"We achieved our result by increasing the density of the positronium atoms in our lab experiment," said David Cassidy, the lead author of the research paper and an assistant researcher working in the laboratory of Allen Mills, a professor of physics. "At such a high density, positronium atoms get annihilated simply by interacting with each other. But it turns out that not all the positronium atoms get annihilated under these conditions."

Cassidy explained that positronium atoms come in two types – say, an up type and a down type. The positronium atoms are only annihilated when an up type meets a down type. Two atoms of the same type do not affect each other.

"So if you have 50 percent ups and 50 percent downs and you squeeze them all together they will totally annihilate and turn into gamma rays," he said. "But if you have, for example, about 66 percent ups and 33 percent downs, then only half of the ups will be destroyed. You will get a load of gamma rays – but in the end you will be left with only one type of atom – in this case, up atoms.

"This is an important development for making the BEC," Cassidy said, "because you have effectively purified your sample of positronium. And you need a pure collection of spin aligned atoms to make the BEC."

When atoms are in the BEC state, they are essentially stopped (or they move extremely slowly), facilitating their study. Non-BEC atoms on the other hand whiz around at very high speeds, making them harder to study.

"There are fundamental processes that can be looked at in new ways when you have matter in the BEC state," Mills said. "Having Bose-condensed atoms makes it easier to probe the way they interact under certain conditions. Moreover, to have motionless positronium atoms is an important aspect for making something called a gamma ray laser, which could have military and numerous scientific applications."

According to Mills and Cassidy, the new research could lead also to the production of fusion power, which is power generated by nuclear fusion reactions.

"The eventual production of a positronium condensate could help us understand why the universe is made of matter and not antimatter or just pure energy," Cassidy said. "It could also one day help us measure the gravitational interaction of antimatter with matter. At present, nobody knows for sure if antimatter falls up or down."

The National Science Foundation and the U.S. Air Force supported the research.

Cassidy and Mills were joined in the study by Vincent Meligne, a graduate student in Mills's lab.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>