Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing time for instrument on Hubble’s successor

07.12.2007
A significant milestone for the Hubble Space Telescope successor, the James Webb Space Telescope (JWST), is on course to be reached before Christmas with the testing of the verification model of the Mid-InfraRed Instrument (MIRI) at the Rutherford Appleton Laboratory in Oxfordshire.

MIRI is one of four sophisticated instruments onboard which will study the early universe and properties of materials forming around new born stars in unprecedented detail. It will also be able to image directly massive planets orbiting other stars.

At the heart of the JWST observatory is a large cold telescope whose primary mirror measures 6.5 metres in diameter compared to 2.4 metres for Hubble, providing an enormous increase in capability to investigate the origin and evolution of galaxies, stars and planetary systems. Due for launch in 2013, JWST, which is a joint cooperative mission between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA), is optimised to operate over a wide range of infrared wavelengths.

MIRI is the first of the JWST instruments to reach this phase of cryogenic performance testing and marks a significant milestone for this international team, which is funded in the UK by the Science and Technology Facilities Council [STFC] and spread across STFC’s UK Astronomy Technology Centre (UK ATC) and Rutherford Appleton Laboratory [RAL], plus team members at Astrium Ltd, and the universities of Leicester and Cardiff .

Speaking at the 3rd Appleton Space Conference today (6th December 2007) European Consortium Lead for MIRI, Dr Gillian Wright MBE from the UK ATC in Edinburgh said, “It is extremely exciting, after working on the project since 1998, to begin to test a complete instrument. This will provide scientists with real data which they can use to understand the best ways of making discoveries with the instrument.”

The testing is being undertaken at the STFC’s Rutherford Appleton Laboratory in Oxfordshire where all MIRI’s subsystems from collaborators in Europe and NASA’s Jet Propulsion Lab are integrated and tested in full.

This involves thermal and electromagnetic calibration testing along with scientific and environmental testing.

Dr Tanya Lim, who leads the 25 people strong international MIRI testing team explains, “Given the international nature of this project it is essential to bring together both instrument and test equipment components from around the world to ensure that they work together.”

She adds, “We will also be using the instrument flight software which will need to work with the spacecraft and ground software systems in order to command the instrument, simulate telemetry to the ground and generate images from the test environment.”

The MIRI testing team are working around the clock until the completion of the first tests just before Christmas. Paul Eccleston, MIRI Assembly, Integration and Test (AIT) Lead adds, “MIRI is the largest individual flight instrument that has been built at RAL, and has presented unusual challenges particularly with regard to cooling and thermal control. The instrument will operate at temperatures much lower than the rest of the spacecraft. As a result, the first two weeks of testing involved cooling the instrument down to its operational temperature of -267ºC, only 6.2K above absolute zero.”

Images of MIRI prior to testing are available from Gill Ormrod – contact details below. Images of JWST are available on the NASA website:

http://www.jwst.nasa.gov/images.html

Contacts
Gill Ormrod – Science and Technology Facilities Council Press Office
Tel: +44 (0) 1793 442012
Email: gill.ormrod@stfc.ac.uk
Rob Gutro, Goddard Space Flight Center
Tel: 1-301-286-4044
Email: Robert.J.Gutro@nasa.gov
Franco Bonacina – ESA Press relations
Tel: +33 (0) 1 5369 7155. Email: Franco.Bonacina1@esa.int
Science contacts
Dr Gillian Wright, MBE – JWST MIRI European Consortium Principal Investigator,
UK ATC, Edinburgh
Tel: +44 (0) 131 668 8248.
Mobile: Tel: +44 791 939 8611
Email: gsw@roe.ac.uk
Paul Eccleston, Assembly, Integration and Test Lead Engineer, STFC RAL
Tel +44 (0) 1235 446366
Email: P.Eccleston@rl.ac.uk
Dr Tanya Lim – MIRI Test Team Lead and Calibration Scientist, STFC RAL
Tel +44 (0) 1235 445045
Email: T.Lim@rl.ac.uk
John Thatcher – European Consortium Project Manager, Astrium Ltd
Tel +44 (0) 1438 773 599
Email : J.Thatcher@astrium.eads.net
John Pye – University of Leicester
Tel +44 (0) 116 252 3552
Email: pye@star.le.ac.uk
Dr Peter Hargrave - University of Cardiff
Tel +44 (0) 2920876682
Email : p.hargrave@astro.cf.ac.uk

Gill Ormrod | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

Tellurium makes the difference

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>