Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the UAB and ICMAB achieve unprecedented control of formation of nanostructures

08.05.2002


Atomic Force Microscope image of nanoislands


A team of researchers from the Universitat Autònoma de Barcelona, together with researchers from ICMAB (CSIC) and other Russian and Ukrainian scientists, have discovered an unprecedented method for accurately controlling the formation of nanometric structures made of semiconducting material in the form of islets, using promising optoelectronic applications in the most advanced communication technology. The discovery was featured as a cover story by the prestigious Nanotechnology magazine.

One of the areas that is currently being most thoroughly researched with respect to future applications is the manipulation of surfaces on a nanometric scale, up to the point of practically constructing and manipulating structures atom by atom, and whereby the quantum effects could give these materials new properties, with revolutionary applications for nanoelectronics, optoelectronics and computing. One of these structures is the so-called quantum dot, in which electrons lose their capacity for mobility in spatial dimensions and become confined to a zero dimension (a dot). At the moment, the experiments with semiconductor materials most similar to quantum dots are the formation of nanoilles, semiconductor islets of several tens of nanometers of diameter and height. These islets can be produced using lithographic techniques, “printing” them onto the surface of a substrate, but for a decade now, scientists have been working on a new, and more efficient and stable, method for constructing them: the spontaneous formation of nanoilles.

Now, a team of researchers from the Universitat Autònoma de Barcelona, together with researchers from the Institute of the Science of Materials in Barcelona (a CSIC institute on the UAB campus), the Institute of Microstructure Physics in Nizhny Novgorod (Russia) and the Institute of Semiconductor Physics in Kiev (Ukraine), have developed unprecedented accuracy in the control of the growth of nanoilles. These researchers have made a detailed study of the spontaneous formation of SiGe nanoilles (semiconductor material) by depositing thin layers of geranium atoms onto silicon substrates, and have observed, for the first time, how they separately affect the thickness of the layers of geranium and the temperature of formation of nanoilles in their distribution, composition and in two possible forms: pyramid or rounded.



The team of researchers has developed an unprecedented level of control of the distribution, shape and composition of the SiGe nanoilles, such that by varying the thickness of the layers of geranium and the temperature of the silicon substrate they can obtain, at will, large densities of small pyramid islets, large round islets distributed at much lower densities or even a uniform mixture of pyramid and rounded islets. As for the control of the composition of the islets’ SiGe semiconductor material, the researchers have observed that as temperature is increased, so does the silicon content, independently of the form and distribution of the nanoilles.

This research was later considered worthy of being the cover story in the prestigious Nanotechnology magazine, and may have important implications for the fields of nanoelectronics and optoelectronics, as semiconductor lasers (such as those used in ‘laser pointers’) manufactured with this material could emit light in a far wider range of colours than at present. It is expected that this discovery will improve the transmission of information via fibre optics and in electronic circuits, the basis of new communication technologies.

The researchers are now working on the formation of other quantum nanostructures, most particularly semiconductor nanolagoons, which are formed spontaneously on depositing layers of cadmium selenium (CdSe) onto zinc selenium (ZnSe) substrates.

Octavi López Coronado | alphagalileo

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>