Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tiny Difference that Created the Universe

07.05.2002


Roughly 15 billion years ago, during the Big Bang, equal amounts of matter and anti-matter should have been created, with an anti-particle for every particle created. Yet when matter and anti-matter meet, they both disappear in a flash of light, so why didn’t they annihilate each other completely? For some reason, during the first moments of the Big Bang, although lots of matter and anti-matter did meet and annihilate, we were left with a slight surplus of matter, which makes up the Universe today. Whilst grateful for our existence, scientists have been struggling for many years to find an explanation. A new laboratory just completed at the University of Sussex will test one of the possible answers.



The researchers at Sussex believe that the surviving matter must have a special kind of asymmetry in order to explain its survival. They think that the negative charge of the electron must be pushed over to one side instead of being centred. This offset is so tiny, that even if the electron were enlarged to the size of the Earth, the offset would only be the size of an atom. A similar effect is predicted in the neutron where the positive and negative charges within it may also be displaced. It could be thanks to this tiny effect, called an electric dipole moment that the Universe itself exists.

Scientific theory can predict how big this electric dipole moment should be, but to actually look for it, researchers need the latest in low temperature equipment and lasers. The new laboratory, the Centre for the Measurement of Particle Electric Dipole Moments, has been equipped with a £1.7 million award from the Joint Infrastructure Fund and offers the
possibility of a breakthrough in the near future.



Professor Ed Hinds, the director of the new centre, said: “This is a unique and very exciting project. We hope eventually to find out what happened between ‘matter’ and ‘anti-matter’ when the Universe was created.”

Dr Alun Anderson, Editor in Chief of the New Scientist and a Sussex alumnus will open the Centre on May 14th.

Julia Maddock | alphagalileo

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>