Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant black holes may be source of high-energy cosmic rays

14.11.2007
Breakthrough astrophysics research may have established the hitherto mysterious source of exceptionally high-energy cosmic ray emissions, according to recently published research that culminates a project developed by a scientist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

This extraordinary result is a product of DOE’s investment in high-energy physics research, giving scientists the resources they need to explore the interactions between matter, energy, time and space.

Argonne senior physicist Harold Spinka, in collaboration with more than 300 scientists from around the world affiliated with the Pierre Auger Observatory in western Argentina, determined a correlation between emanations of sufficiently energetic cosmic rays with a particular class of extrastellar objects, known as active galactic nuclei (AGNs). Scientists believe that AGNs are massive black holes in the center of distant galaxies that devour matter while ejecting plasma streams composed of high-energy particles.

“We have taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays,” said Nobel Prize winner and University of Chicago professor emeritus James Cronin, who founded the Pierre Auger Observatory with Alan Watson of the University of Leeds. “The age of cosmic-ray astronomy has arrived. In the next few years, our data will permit us to identify the exact sources of these cosmic rays and how they accelerate these particles.”

After observing and recording approximately two years’ worth of cosmic rays hitting the earth, the Pierre Auger team noticed that the cosmic rays – a misnomer for energetic atomic particles, mainly protons -- with energies in excess of 60 EeV (60 exa-electron volts, or 1018 electron volts) tended to emanate from locations near known AGNs.

Most cosmic rays that strike the Earth originate from within our own Milky Way galaxy, where they emanate from supernovae, black holes or neutron stars. However, these cosmic rays have a substantially lower energy than those under investigation in the Pierre Auger study. Researchers knew that they could not attribute the production of those rays to any phenomenon or body within our own galaxy, and until now research to identify an extra-galactic source had yielded little more than hypotheses.

Astronomers had difficulty pinpointing the sources of especially energetic cosmic rays because they hit the Earth so infrequently, in contrast to the lower-energy cosmic radiation that continually bombards the Earth. During more than two years of observation, the Pierre Auger scientists detected only 28 cosmic rays that matched their stringent criteria. They excluded extragalactic cosmic rays with energies lower than 40 to 60 EeV, because the trajectories of these particles are so badly bent by deep-space magnetic fields that scientists cannot determine their origin; they also did not look at cosmic rays that had traveled more than 300 million light years due to concerns that interactions with cosmic background radiation during such a long journey would have significantly reduced their energy.

“The concern is that if you look too far back in time and space, it becomes harder to figure out a correlation,” Spinka said.

Since 2004, the observatory, which contains a telescope array the size of Rhode Island, has detected only 80 cosmic rays with energies greater than 40 EeV. Of the 28 of these that had energies greater than approximately 60 EeV and originated within about 250 million light-years of Earth, 20 were located close to known AGNs. Six of the remaining eight cosmic rays come from directions where the source may be obscured by other matter in our galaxy.

According to Spinka, astronomers have worked hard to complete the catalog of all the AGNs in the observable universe, and he believes that cosmic rays may offer clues as to where others might be. “I think that many astronomers will indeed go back and look at the areas of space to which we traced the cosmic rays, because it’s definitely possible we might have missed something,” he said.

Cosmic ray observations provide astronomers with another way of examining celestial features outside of the Milky Way, Spinka said. “Up until now there has been no way of doing astronomy for objects outside our galaxy except by using various wavelengths of light. This paper represents the first time that we’ve been able to use charged particles to observe these faraway objects.”

The Pierre Auger Observatory is being built by a team of more than 370 scientists and engineers from 17 countries. “The collaboration is a true international partnership in which no country contributed more than 25 percent of the $54 million construction cost,” said Danilo Zavrtanik of the University of Nova Gorica and chair of the Auger Collaboration Board.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov
http://www.auger.org/news/PRagn/AGN_correlation.html

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>