Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers unmask missing black holes

29.10.2007
An international team of astronomers including experts from Durham University have unmasked hundreds of black holes hiding deep inside dusty galaxies billions of light-years away.

The massive, growing black holes, discovered by NASA's Spitzer and Chandra space telescopes, represent a large fraction of a long-sought missing population of black holes.

Their discovery implies there are hundreds-of-millions of additional black holes growing in our young universe, more than doubling the total amount known at that distance.

The research was led by Emanuele Daddi of the Commissariat a l'Energie Atomique in France and two papers will appear in the November 10 issue of the Astrophysical Journal.

Co-author David Alexander, in the Department of Physics at Durham University, said: “The findings are the first direct evidence that most, if not all, massive galaxies in the distant universe spend their youths building monstrous black holes at their cores.”

For decades, large populations of active black holes have been considered missing.

These supermassive black holes produce highly energetic structures, called quasars, which consist of doughnut-shaped clouds of gas and dust that surround and feed the budding black holes.

As the gas and dust is devoured, it heats up and shoots out X-rays. Those X-rays can be detected as a general glow in space, but often the quasars themselves can't be seen directly because dust and gas blocks them from our view.

"We knew from other studies from about 30 years ago that there must be more quasars in the universe, but we didn't know where to find them until now," said Emanuele Daddi.

Daddi and his team initially set out to study 1,000 dusty, massive galaxies that are busy making stars, and were thought to lack quasars. The galaxies are about the same mass as our own spiral Milky Way galaxy, but irregular in shape.

At 9 to 11 billion light-years away, they exist at a time when the universe was in its adolescence, between 2.5 and 4.5 billion years old.

When the astronomers peered more closely at the galaxies with Spitzer's infrared eyes, they noticed that about 200 of the galaxies gave off an unusual amount of infrared light.

X-ray data from Chandra, and a technique called "stacking," revealed the galaxies were in fact hiding plump quasars inside. The scientists now think that the quasars heat the dust in their surrounding doughnut clouds, releasing the excess infrared light.

"We found most of the population of hidden quasars in the early universe," said Daddi. Previously, only the rarest and most energetic of these hidden black holes had been seen at this early epoch.

The newfound quasars are helping answer fundamental questions about how massive galaxies evolve. For instance, astronomers have learned that most massive galaxies steadily build up their stars and black holes simultaneously until they get too big and their black holes suppress star formation.

The observations also suggest that collisions between galaxies might not play as large a role in galaxy evolution as previously believed.

"Theorists thought that mergers between galaxies were required to initiate this quasar activity, but we now see that quasars can be active in unharrassed galaxies," said David Alexander.

The new observations were made as part of the Great Observatories Origins Deep Survey, the most sensitive survey to date of the distant universe at multiple wavelengths.

Consistent results were also recently obtained by Fabrizio Fiore of the Osservatorio Astronomico di Roma and his team. Their results will appear in the Jan 1, 2008, issue of Astrophysical Journal.

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk/news

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>