Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Space Agency to probe asteroid blind spot

15.04.2002


Artist’s impression on an asteroid impact with the Earth
® ESA


In the past five weeks two asteroids have passed close by Earth, at distances of 1.2 and 3 times the distance to the Moon. Another asteroid has recently been shown to be on course for a collision with Earth in 2880.

Monitoring known asteroids allows astronomers to predict which may collide with Earth. But that is only true for the asteroids we know of. What about those that lie in the asteroid blind spot between the Sun and Earth? The European Space Agency is studying ways in which its missions can assist in monitoring these unseen but potentially hazardous asteroids.
It is difficult to estimate the danger posed by asteroids. This is, in part, because astronomers do not yet know how many asteroids there are. A recent discovery, made using data from ESA`s Infrared Space Observatory (ISO), showed that there could be nearly two million asteroids larger than one kilometre in the main asteroid belt, between Mars and Jupiter. That is more than twice as many as previously thought.


In addition, even when an asteroid is identified many observations must be made before it is known whether or not it will come close to, or even collide with, Earth.

If the asteroids remained in the main-belt, they would pose no danger to Earth. However, they can be thrown into different orbits by collisions with other asteroids or by the influence of Jupiter`s gravitational field. If their new orbits cross the Earth`s orbit, they could one day collide with our planet, inflicting unprecedented devastation.

A number of ground-based searches are already underway to find as many potentially hazardous asteroids (PHAs) as possible but there is a notorious `blind spot` that telescopes on Earth can never peer into. It is the region of space inside Earth`s orbit, towards the Sun. From Earth, astronomical observations close to the Sun are almost impossible because it means observing during the daytime when only the brightest celestial objects stand out from the blue sky. That means asteroids lurking in this region of space can `sneak up` on the Earth undetected. Asteroid 2002 EM7, which passed close by the Earth on 8 March this year, was one such object and was only detected after it crossed Earth`s orbit to appear briefly in the night sky, before it crossed back into the glare of the Sun.

About 550 similar asteroids are known. They are called the Atens and spend most of their time inside Earth`s orbit, close to the Sun. Traditional estimates suggest there may be several thousand in total and tracking them from Earth is next to impossible. However, a study performed for ESA has shown that the Gaia spacecraft will be able to see clearly into this `blind spot` and keep precise track of the Aten population.

François Mignard of Observatoire de la Côtes d`Azur, France, conducted the study. He found that Gaia would be ideal because it is designed to measure the position of celestial objects with unprecedented accuracy. In addition, since there is no atmosphere in space to scatter the Sun`s rays and create a blinding blue sky, Gaia can see close to the Sun without disturbance.

Gaia is expected to be launched around 2010. Even if ground-based searches have spotted more Atens by that time, the mission still has an essential role to play because it will reveal their orbits to a precision 30 times better than any observation from the ground, thus identifying whether any pose a danger to Earth.

"To know how close these objects will come to Earth is very dependent on how accurately one can measure their orbits. That`s the main contribution that Gaia can be expected to make," says Michael Perryman, project scientist for Gaia, at ESA`s European Space Research and Technology Centre in the Netherlands.

Gaia`s data will also provide astronomers with a first estimate of these objects` composition. This knowledge could help to determine methods to divert or destroy asteroids that are set on a collision course with Earth.

Several ESA missions are contributing, or will contribute, to our understanding of minor bodies of the Solar System: these include ISO, Gaia and Rosetta, which will study asteroids Siwa and Otawara. ESA is also considering the addition of an asteroid spotting telescope to its BepiColombo mission.

Monica Talevi | alphagalileo
Further information:
http://www.esa.int/export/esaCP/ESA93VF18ZC_index_0.html

More articles from Physics and Astronomy:

nachricht Light provides spin
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht The surprising environment of an enigmatic neutron star
18.09.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>