Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First light for world's largest 'thermometer camera'

06.08.2007
The world's largest bolometer camera for submillimetre astronomy is now in service at the 12-m APEX telescope, located on the 5100m high Chajnantor plateau in the Chilean Andes. LABOCA was specifically designed for the study of extremely cold astronomical objects and, with its large field of view and very high sensitivity, will open new vistas in our knowledge of how stars form and how the first galaxies emerged from the Big Bang.

"A large fraction of all the gas in the Universe has extremely cold temperatures of around minus 250 degrees Celsius, a mere 20 degrees above absolute zero," says Karl Menten, director at the Max Planck Institute for Radioastronomy (MPIfR) in Bonn, Germany, that built LABOCA. "Studying these cold clouds requires looking at the light they radiate in the submillimetre range, with very sophisticated detectors."

Astronomers use bolometers for this task, which are, in essence, thermometers. They detect incoming radiation by registering the resulting rise in temperature. More specifically, a bolometer detector consists of an extremely thin foil that absorbs the incoming light. Any change of the radiation's intensity results in a slight change in temperature of the foil, which can then be registered by sensitive electronic thermometers. To be able to measure such minute temperature fluctuations requires the bolometers to be cooled down to less than 0.3 degrees above absolute zero, that is below minus 272.85 degrees Celsius.

"Cooling to such low temperatures requires using liquid helium, which is no simple feat for an observatory located at 5100m altitude," says Carlos De Breuck, the APEX instrument scientist at ESO.

Nor is it simple to measure the weak temperature radiation of astronomical objects. Millimetre and submillimetre radiation opens a window into the enigmatic cold Universe, but the signals from space are heavily absorbed by water vapour in the Earth's atmosphere. "It is a bit as if you were trying to see stars during the day," explains Axel Weiss of the MPIfR and leader of the team that installed LABOCA on APEX.

This is why telescopes for this kind of astronomy must be built on high, dry sites, and why the 5100m high plateau at Chajnantor in the extremely dry Atacama Desert was chosen. Even under such optimal conditions the heat from Earth's atmosphere is still a hundred thousand times more intense than the tiny astronomical signals from distant galaxies. Very special software is required to filter such weak signals from the overwhelming disturbances.

LABOCA (LArge BOlometer Camera) and its associated software were developed by MPIfR. "Since so far there are no commercial applications for such instruments we have to develop them ourselves," explains Ernst Kreysa, from MPIfR and head of the group that built the new instrument.

A bolometer camera combines many tiny bolometer units into a matrix, much like the pixels are combined in a digital camera. LABOCA observes at the submillimetric wavelength of 0.87 mm, and consists of 295 channels, which are arranged in 9 concentric hexagons around a central channel. The angular resolution is 18.6 arcsec, and the total field of view is 11.4 arcmin, a remarkable size for instruments of this kind.

"The first astronomical observations with LABOCA have revealed its great potential. In particular, the large number of LABOCA's detectors is an enormous improvement over earlier instruments," says Giorgio Siringo from MPIfR and member of the LABOCA team. "LABOCA is the first camera that will allow us to map large areas on the sky with high sensitivity."

The Atacama Pathfinder Experiment (APEX) where LABOCA is installed is a new-technology 12-m telescope, based on an ALMA prototype antenna, and operating at the ALMA site. It has modified optics and an improved antenna surface accuracy, and is designed to take advantage of the excellent sky transparency working with wavelengths in the 0.2 to 1.4 mm range.

"APEX is located a mere 2 km from the centre of the future ALMA array. The new LABOCA camera will be very complementary to ALMA, as its very wide view will find thousands of galaxies which will be observed in great detail with ALMA," says De Breuck.

APEX is a collaboration between the Max Planck Institute for Radioastronomy, Onsala Space Observatory and ESO.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-35-07.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>