Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent galaxy seen in 3-D

21.03.2002


Astronomers at the Gemini telescope in Hawaii have obtained a complete, multi-dimensional picture, of the dynamic flow of gas and stars at the core of an active galaxy [NGC 1068] located 70 million light years away. The image was achieved in a single snapshot and is the first time such a picture has been obtained by one of the new generation of giant telescopes with an 8 - 10 metre light collecting mirror. The astronomers used a new instrument - the Integral Field Unit (IFU), designed and built at Durham University - fitted to the telescope`s multi-object spectrograph to image the violent galaxy. The resulting data has been transformed into an animation that dramatically reveals the internal dynamics of the galaxy - including the interactions of a pair of galactic-scale jets that spew material for thousands of light years away from a suspected black hole at the galaxy`s core.



"We are very excited by these results and the superb capabilities that the IFU has added to the Gemini Multi-Object Spectrograph (GMOS)", commented Dr. Jeremy Allington-Smith, from Durham University, who was responsible for the overall design and construction of the GMOS Integral Field Unit. " In effect we have added an extra dimension to the main instrument so that it can physically map the motion of gas and stars at any point in the image of the object under study. So far we have used it to map the motion of gas within the nucleus of a powerful active galaxy, NGC1068, and the orbits of stars within more normal galaxies, but it can also be used to study regions within our own galaxy where stars are being formed."

The IFU instrument uses hundreds of tiny optical fibres, each thinner than a human hair, with tiny micro-lenses attached to the end to guide light from the telescope`s two dimensional image to a spectrograph. The spectrograph produces one individual spectrum for each fibre, a total of 1500 individual spectra, that can each reveal details of the physical conditions and velocity of the gas, dust and stars that it observes. This technology is new to the world of 8 -10 metre class telescopes and is particularly powerful when combined with an advanced telescope like Gemini which has 10 times the light collecting power of the Hubble Space Telescope and uses sophisticated optical technologies to focus starlight to razor sharpness.


Dr. Gerald Cecil, of the University of North Carolina, recently studied this particular galaxy using the Hubble Space Telescope and believes that the new Gemini spectra will clarify many patterns revealed by Hubble. "Large ground-based telescopes like Gemini are the perfect compliment to Hubble because they can collect so much more light. But it`s critical to use all this light cunningly, and not throw most of it away as standard slit spectrographs do. Using the Gemini Multi-Object Spectrograph`s integral field capability allows us to perform detailed studies of the light to provide critical physical constraints on the nature of faint cosmic objects." Dr. Cecil`s Hubble findings are to be published in the April 1 issue of the Astrophysical Journal.

"By using this technique we add an extra dimension to the data and can essentially make a movie with one click of the shutter," says Dr. Bryan Miller, a Gemini astronomer working on Integral Field techniques. "When we play back our movie of the galaxy NGC1068, we see a 3-dimensional view of the core of this galaxy. It is striking how much easier it is to interpret features with this kind of data. With 3-dimensional views of galaxies we can determine mass distributions, true shapes, and hopefully their origins much more accurately than before."

"The Gemini data of NGC 1068 reveal one of the lesser known features of galaxy jets," explains Gemini North Associate Director Dr. Jean-Rene Roy. "For the first time we are able to clearly see the jet`s expanding lobe as its hypersonic bow shock slams directly into the underlying gas disk of the galaxy. It`s like a huge wave smashing onto a cosmic shoreline."

The IFU instrument was designed and built in the UK at Durham University. Prof. Ian Halliday, Chief Executive of the Particle Physics and Astronomy Research Council, the agency responsible for funding UK astronomy said, ` The IFU will provide astronomers with a powerful new tool to probe the mysterious cosmic caldrons of the Universe, like those at the core of galaxies and stellar nurseries. The UK has almost a 25% share in the twin Gemini telescopes and it`s significant that British scientists have played such a major role in this innovative instrument. The entire team at Durham is to be congratulated. It clearly endorses the UK`s contribution to such international projects.`

The Integral Field Spectroscopy capabilities of the Gemini Observatory are still developing. Within the next two years both Gemini North on Hawaii and its Southern Hemisphere twin in Chile will have optical and near-infrared Integral Field Units. Some of these systems will work with adaptive optics to provide the highest spatial resolution images deliverable by the telescopes, including images in the infrared that will be sharper than can be produced by the Hubble Space Telescope at those wavelengths.

Gill Ormrod | alphagalileo

More articles from Physics and Astronomy:

nachricht Searching for disappeared anti-matter: A successful start to measurements with Belle II
26.03.2019 | Max Planck Institute for Physics

nachricht Extremely accurate measurements of atom states for quantum computing
26.03.2019 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>