Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic field uses sound waves to ignite sun's ring of fire

30.05.2007
Research explains century-old mystery about the interior of the sun

Sound waves escaping the sun's interior create fountains of hot gas that shape and power a thin region of the sun's atmosphere which appears as a ruby red "ring of fire" around the moon during a total solar eclipse, according to research funded by the National Science Foundation (NSF) and NASA.

The results are presented today at the American Astronomical Society's Solar Physics Division meeting in Hawaii.

This region, called the chromosphere because of its color, is largely responsible for the deep ultraviolet radiation that bathes the Earth, producing the atmosphere's ozone layer.

It also has the strongest solar connection to climate variability.

"The sun's interior vibrates with the peal of millions of bells, but the bells are all on the inside of the building," said Scott McIntosh of the Southwest Research Institute in Boulder, Colo., lead member of the research team. "We've been able to show how the sound can escape the building and travel a long way using the magnetic field as a guide."

The new result also helps explain a mystery that's existed since the middle of the last century -- why the sun's chromosphere (and the corona above) is much hotter than the visible surface of the star. "It's getting warmer as you move away from the fire instead of cooler, certainly not what you would expect," said McIntosh.

"Scientists have long realized that observations of solar magnetic fields are the keys that will unlock the secrets of the sun's interior," said Paul Bellaire, program director in NSF's division of atmospheric sciences, which funded the research. "These researchers have found an ingenious way of using magnetic keys to pick those locks."

Using spacecraft, ground-based telescopes, and computer simulations, the results show that the sun's magnetic field allows the release of wave energy from its interior, permitting the sound waves to travel through thin fountains upward and into the solar chromosphere. The magnetic fountains form the mold for the chromosphere.

Researchers say that it's like standing in Yellowstone National Park and being surrounded by musical geysers that pop up at random, sending out shrill sound waves and hot water shooting high into the air.

"This work finds the missing piece of the puzzle that has fascinated many generations of solar astronomers," said Alexei Pevtsov, program scientist at NASA. "If you fit this piece into place, the whole picture of chromosphere heating becomes more clear."

Over the past twenty years, scientists have studied energetic sound waves as probes of the Sun's interior because the waves are largely trapped by the sun's visible surface -- the photosphere. The research found that some of these waves can escape the photosphere into the chromosphere and corona.

To make the discovery, the team used observations from the SOHO and TRACE spacecraft combined with those from the Magneto-Optical filters at Two Heights, or MOTH, instrument in Antarctica, and the Swedish 1-meter Solar Telescope on the Canary Islands.

The observations gave detailed insights into how some of the trapped waves and their pent-up energy manage to leak out through magnetic "cracks" in the photosphere, sending mass and energy shooting upwards into the atmosphere above.

By analyzing motions of the solar atmosphere in detail, the scientists observed that where there are strong knots in the Sun's magnetic field, sound waves from the interior can leak out and propagate upward into its atmosphere.

"The constantly evolving magnetic field above the solar surface acts like a doorman opening and closing the door for the waves that are constantly passing by," said Bart De Pontieu, a scientist at the Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, Calif.

These results were confirmed by state-of-the-art computer simulations that show how the leaking waves propel fountains of hot gas upward into the sun's atmosphere, and fall back to its surface a few minutes later.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>