Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic tweezers unravel cellular mechanics

14.05.2007
By injecting tiny magnetic beads into a living cell and manipulating them with a magnetic ‘tweezer’, scientists of the University of Twente succeed in getting to know more about the mechanics of the cell nucleus.

The way DNA is ‘translated’ into the specific functions of the cell strongly depends on the mechanics, so this information is of great value. Scientists Anthony de Vries, Hans Kanger and Vinod Subramaniam of the Biophysical Engineering Group present their results in Nano Letters.

The spatial organization in a living cell tells a lot about the way the cell works and the molecular processes within. It is clearly indicated that the mechanical properties of DNA and chromatin –the complex of DNA and proteins- play a major role in the activity of thousands of genes. Gene expression, in which DNA expresses itself in functional proteins, seems to depend highly on these mechanical properties. Until now, only individual chromosomes have been investigated: the new method allows scientists to monitor the mechanical properties of chromatin within the cell and investigate the internal structure of the cell nucleus.

Three magnets

The UT-scientists therefore inject a bead into the cell nucleus using a micro pipette. The bead is about 1 micron in diameter. The cell is placed in the centre of three tiny magnets (micron dimensions). Each of them can generate a force on the bead. From the nanometer distances the bead is allowed to move, the elasticity and viscosity of the chromatin can be determined. Using an intuitive polymer model of chromatin, the organization of chromatin within the cell can then be predicted: they organize themselves within domains not entirely filling the nucleus.

The scientists say that their technique is a crucial step towards magnetic nanodevices that can be implanted in a living cell, functioning as biosensors for monitoring chemical and physical processes in cell and tissue. It will also become possible to interact with these processes using the magnetic technique.

The research has been conducted within the Biophysical Engineering Group (http://bpe.tnw.utwente.nl), part of the BMTI Institute for Biomedical Technology and the MESA+ Institute for Nanotechnology, both at the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Physics and Astronomy:

nachricht Astrophysicists measure precise rotation pattern of sun-like stars for the first time
21.09.2018 | NYU Abu Dhabi

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>