Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic tweezers unravel cellular mechanics

14.05.2007
By injecting tiny magnetic beads into a living cell and manipulating them with a magnetic ‘tweezer’, scientists of the University of Twente succeed in getting to know more about the mechanics of the cell nucleus.

The way DNA is ‘translated’ into the specific functions of the cell strongly depends on the mechanics, so this information is of great value. Scientists Anthony de Vries, Hans Kanger and Vinod Subramaniam of the Biophysical Engineering Group present their results in Nano Letters.

The spatial organization in a living cell tells a lot about the way the cell works and the molecular processes within. It is clearly indicated that the mechanical properties of DNA and chromatin –the complex of DNA and proteins- play a major role in the activity of thousands of genes. Gene expression, in which DNA expresses itself in functional proteins, seems to depend highly on these mechanical properties. Until now, only individual chromosomes have been investigated: the new method allows scientists to monitor the mechanical properties of chromatin within the cell and investigate the internal structure of the cell nucleus.

Three magnets

The UT-scientists therefore inject a bead into the cell nucleus using a micro pipette. The bead is about 1 micron in diameter. The cell is placed in the centre of three tiny magnets (micron dimensions). Each of them can generate a force on the bead. From the nanometer distances the bead is allowed to move, the elasticity and viscosity of the chromatin can be determined. Using an intuitive polymer model of chromatin, the organization of chromatin within the cell can then be predicted: they organize themselves within domains not entirely filling the nucleus.

The scientists say that their technique is a crucial step towards magnetic nanodevices that can be implanted in a living cell, functioning as biosensors for monitoring chemical and physical processes in cell and tissue. It will also become possible to interact with these processes using the magnetic technique.

The research has been conducted within the Biophysical Engineering Group (http://bpe.tnw.utwente.nl), part of the BMTI Institute for Biomedical Technology and the MESA+ Institute for Nanotechnology, both at the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>