Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory predicts aging process in DVDs, plexiglas, other polymer glasses

24.04.2007
Polymer glasses are versatile plastics widely used in applications ranging from aircraft windshields to DVDs.

Researchers at the University of Illinois have developed a theory that predicts how these materials age. The theory also explains why motions at the molecular level can have macroscopic consequences.

"Glasses, including polymer glasses, are essentially frozen liquids,"
said Kenneth S. Schweizer, the G. Ronald and Margaret H. Morris Professor of Materials Science at the University of Illinois. "They appear solid, but because they are frozen liquids, the molecules continually undergo small motions that lead to a time dependence of properties."

Three years ago, Schweizer and graduate student Erica Saltzman developed a theory that described the transition upon cooling of a polymeric material from a liquid to an amorphous solid or glass. The theory explained how the viscosity of a polymer glass changes dramatically over a narrow temperature range. The researchers reported that work in the July 22, 2004, issue of the Journal of Chemical Physics.

Now, in the April 20 issue of Physical Review Letters, Schweizer and postdoctoral research associate Kang Chen present a theory to describe the aging process in polymer glasses. The new theory predicts not only how polymer molecules move, but also the material properties, at a wide variety of times and temperatures.

Polymer glasses are plastics that possess unusual and technologically useful mechanical properties. Unlike most other types of solids, polymer glasses can possess high impact resistance and, even though they are stiff, can often be significantly deformed without breaking. They are usually inexpensive to make, and easily melted and molded into many shapes.

And, they're always on the move.

Unlike window glass, which melts at roughly 1,200 degrees above room temperature, polymer glasses have melting points much closer to room temperature. So close, in fact, that many polymer glasses retain some liquid-like properties at room temperature, including motion at the molecular level.

"The movements are so small and so slow, we can't see them without the aid of sophisticated measuring tools," Schweizer said. "Nevertheless, this residual motion can significantly change the material's mechanical and thermal properties over time."

As the material gradually reconfigures and approaches equilibrium at room temperature, the movements become slower and slower. Under sufficiently cold conditions, this "relaxation" time can become astronomically large, even longer than the age of the universe for some materials.

"Among other possible effects, the aging process causes polymer glasses to become stiffer and often more brittle," said Schweizer, who also is a professor of chemistry, of chemical and biomolecular engineering, and a researcher at the university's Frederick Seitz Materials Research Laboratory.

Over time, the molecules crowd closer together, increasing the density and changing the mechanical properties of the material.

"Through our theory we developed a way to relate the physical properties of a polymer glass to the time scale of molecular movement," Schweizer said. "This information is especially important in engineering applications where small changes in dimensions, stiffness or other properties can affect long-term performance or reliability."

The work was funded by the National Science Foundation.

Editor's note: To reach Kenneth Schweizer, call 217-333-6440; e-mail:
kschweiz@uiuc.edu.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0423aging.html

More articles from Physics and Astronomy:

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

nachricht UT-ORNL team makes first particle accelerator beam measurement in six dimensions
13.08.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>