Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EPSRC grant enables research into using lasers for new medical, industrial and security applications

15.03.2007
Shine a powerful laser beam on a small piece of metal, plastic, or a liquid and a burst of intense high-energy ionizing radiation is emitted.

Thanks to a grant of £5m from the EPSRC, researchers at Queen's University Belfast, Central Laser and Central Microstructure Facilities at Rutherford Appleton Laboratory, Imperial College London, and the Universities of Surrey, Birmingham, Paisley, Strathclyde and Southampton along with the National Physical Laboratory aim to exploit this property of laser-irradiated matter to help them develop new radiation sources with such diverse medical, industrial and security applications as the treatment of cancers, improved semiconductor production and the rapid detection of hidden explosives.

The radiation that is emitted is in the form of beams of ions, protons, neutrons, electrons, gamma and X-rays, depending on the energy and duration of the laser and the material being irradiated. An ultra short laser pulse can generate a burst of high energy particles and radiation which lasts only picoseconds (millionths of a millionth of a second). Moreover, if the material is extremely thin - just a few millionths of a millimetre thick - it is possible to control other properties of the bursts, such as their energy content or energy spectrum

Of the possible radiation beams that can be produced, principal investigator Dr Marco Borghesi (Queen’s University Belfast) and his colleagues have identified protons, ions, and gamma rays specifically as the products of laser-energised sources with the greatest potential. The applications for such ion beams, they envisage lie in many areas.

For instance, laser-energised bursts of proton and light ions have the potential to substantially reduce the high equipment costs of proton and ion radiotherapy of cancer, which have so far precluded their routine use in the treatment of cancers in the UK. Compared to the use of X-rays, ion beam therapy promises more effective cancer control and improved quality of life in cancer patients. This is because the particle beam produces a pronounced dose peak within the cancer, with little or no dose beyond. In this way the radiation exposure of other tissues and organs is only a half to a tenth of that which occurs with conventional X-ray based radiotherapy.

Compact laser-energised sources of ions could potentially be used in all UK Cancer Centres, where linear accelerators are presently used to produce X-ray beams for cancer treatment. Proton and ion beams could also be used in research into the effects of cosmic ray exposure. People are currently exposed to cosmic rays during air travel and in space.

Other applications lie in science and industry. Firing a flash of ions at an object can reveal information about its internal structure, and can be useful in engineering diagnostics and the quality control of semiconductor electronics devices. Flash radiography using these beams can also be used to test satellites destined for earth orbit for resilience to high levels of cosmic rays, or reveal faults in rapidly moving components such as turbine blades.

In fundamental science, the new approach has great potential for the versatile production of intense, synchronised beams from a robust and compact source. Such a source could undertake many of the experiments that the enormous and expensive national synchrotron particle accelerators currently do, but at much lower cost and on a laboratory bench-top scale. This could allow physical scientists to carry out so-called pump-probe experiments on an almost routine basis allowing them to get to the heart of matter, materials, and molecules in biology, nanotechnology, and chemistry.

Additionally, radiation beams could have applications in security. A penetrating beam could be used in rapid imaging detection of hidden materials and explosives in large packages and freight containers using 3D gamma-ray mapping to give better resolution and clarity than currently possible.

According to Borghesi and his colleagues, the project aims to develop the relevant technology for such high-flux, high-repetition beams as well as to devise the diagnostic tests for characterising the beams. At the same time, they aim to achieve a high standard of output beam quality that will be necessary to make any of the above techniques viable. They suggest that this can be achieved through a combination of innovative developments in target production and delivery for generating the beams, detector technology, and beam property optimization and control.

Success will provide ultra-short synchronised bursts of protons, ions and gamma rays for potential use in research, engineering, and medicine. The researchers add that the devices should also be adaptable to delivering X-ray, electron, and neutron beams for even more diverse applications. For example, neutron beams in combination with 3 D gamma-ray mapping could be used to activate materials to rapidly identify suspect materials.

Stuart Miller | alfa
Further information:
http://www.libra-bt.co.uk/
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>