Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COLD safer than HOT

27.02.2002


Fires can devastate HOT forests.
© Getty Images


New theory shows that high performance needn’t mean high risk.

For man-made systems such as machines and markets, catastrophe lurks somewhere between high risk and high performance. US physicists may have found a way to strike the optimal balance1.

This trade-off is familiar to the financial world. Brokers develop investment portfolios to provide the best returns within a specified level of risk. Mark Newman and co-workers at the Santa Fe Institute in New Mexico have borrowed some ideas from the economic theories of risk aversion to create a general prescription for avoiding ruin.



As a simple model of a system where productivity is coupled to risk, the researchers considered forest management. A forester wants to plant trees densely enough to produce a high timber yield. But the denser the trees, the more susceptible a forest is to devastating fires. So forests include open spaces to limit fires.

In 1999, researchers showed that complex systems like this often have states of ’highly optimized tolerance’ or HOT2,3. In a HOT state, performance (tree yield, in this case) is as good as it can be, in the face of influences (such as forest fires) that potentially undermine it.

But a HOT system has an Achilles’ heel. It is typically fragile under perturbations for which it was not designed. For example, if the distribution of fire breaks or sparks alters slightly, a forest can become highly susceptible to fires and give a poor yield.

Newman’s team now points out that HOT designs have another drawback. The cost of an optimal performance is a high chance of a ruinous collapse. Catastrophic fires that burn nearly all the trees are rare, but not as rare as one would expect if fire size were random. The optimal state is a high-risk state: it gives good returns at the price of possible ruin.

Most engineers don’t want to run this risk. So Newman’s group has calculated how to design a system to optimize performance and almost eliminate the probability of ruinous events. They call this design principle ’constrained optimization with limited deviations’, or COLD.

Surprisingly, a COLD state can completely remove the danger of total ruin while sacrificing only a few per cent of the average yield relative to a HOT state. Newman and colleagues say that, as we are generally risk-averse, we are more likely to prefer COLD designs than HOT ones.

Nature, apparently, is more short-sighted. Ecosystems, for example, are often in HOT states They are catastrophically susceptible to rare disturbances not accounted for by natural selection - such as meteorite impacts.

References

  1. Newman, M. E. J., Girvan, M. & Farmer, J. D. Optimal design, robustness, and risk aversion. Preprint, (2002).
  2. Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, 60, 1412 - 1427, (1999).
  3. Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Physical Review Letters, 84, 2529 - 2532, (2000).

    PHILIP BALL | © Nature News Service
    Further information:
    http://www.nature.com/nsu/020225/020225-3.html

More articles from Physics and Astronomy:

nachricht Magnetic tuning at the nanoscale
13.11.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht At future Mars landing spot, scientists spy mineral that could preserve signs of past life
13.11.2019 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Small RNAs link immune system and brain cells

13.11.2019 | Life Sciences

New Pitt research finds carbon nanotubes show a love/hate relationship with water

13.11.2019 | Materials Sciences

Magnets for the second dimension

12.11.2019 | Machine Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>