Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down with physics: Giant CMS magnet goes underground at CERN

02.03.2007
Scientists of the US CMS collaboration joined colleagues around the world in announcing today (February 28) that the heaviest piece of the Compact Muon Solenoid particle detector has begun the momentous journey into its experimental cavern 100 meters underground. A huge gantry crane is slowly lowering the CMS detector's preassembled central section into place in the Large Hadron Collider accelerator at CERN in Geneva, Switzerland.

At 1,950 metric tons, the section, which contains the detector's solenoid magnet, weighs as much as five jumbo jets and is 16 meters tall, 17 meters wide and 13 meters long. Its descent is expected to take about 10 hours.

"This is a challenging feat of engineering, as there are just 20 centimeters of leeway between the detector and the walls of the shaft," said CERN physicist Austin Ball, technical coordinator of CMS. "The detector is suspended by four massive cables, each with 55 strands, and attached to a step-by-step hydraulic jacking system, with sophisticated monitoring and control to ensure the object does not sway or tilt."

Of the CMS collaboration's approximately 1500 physicists, about one-third are U.S. scientists. The Department of Energy's Fermi National Accelerator Laboratory is the host laboratory for US CMS, and U.S. scientists have designed, built and delivered to CERN several key elements of the CMS detector. Currently, U.S. contributions to CMS are more than 98 percent complete. A U.S. team from Fermilab recently carried out a precision mapping of the magnetic field of the CMS solenoid magnet that is being lowered today. By observing the curvature of the paths of charged particles in the magnetic field, physicists will calculate the energy of particles flying out from billions upon billions of proton-proton collisions that will occur inside the detector.

"We are proud of our contribution to the extraordinary international scientific endeavor now taking shape at the LHC," said Associate Director for High Energy Physics at DOE's Office of Science Dr. Robin Staffin. "We applaud the engineering tour de force of today's CMS milestone at CERN. Each step forward at the LHC experiments and the accelerator brings us closer to the start of scientific operations and to breakthroughs in our understanding of the physics of the universe."

Experimenters have already lowered the first seven of 15 pieces of the CMS detector, with the first piece arriving in the experimental cavern on November 30, 2006. The giant section descending today marks the halfway point in the lowering process, with the last piece scheduled to make its descent in summer 2007. Particle detectors are typically assembled underground, where the accelerator tunnel is located. CMS has broken with tradition by starting assembly before completion of the underground cavern, taking advantage of a spacious surface assembly hall to preassemble and pretest the detector's myriad components and systems.

"This is an impressive milestone in the complex installation of the CMS particle detector," said Dr. Moishe Pripstein, Program Director at the National Science Foundation. "It augurs well for being ready for first beam collisions at the LHC. We are delighted that scientists from U.S. universities and from Fermilab are making substantial technical contributions to this grand international collaboration and look forward to exciting results in the next several years."

Physicists are preparing the CMS detector and its sister detector, ATLAS, to take data at CERN's Large Hadron Collider, where scientists predict that they will make fundamental discoveries about the universe, using very-high-energy proton collisions. Beyond revealing a new world of unknown particles, the LHC experiments could explain why those particles exist and behave as they do. They could discover the origins of mass, shed light on dark matter, uncover hidden symmetries of the universe, and possibly find extra dimensions of space.

Judy Jackson | EurekAlert!
Further information:
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>