Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust findings override some commonly held astronomy beliefs

18.12.2006
Contrary to a popular scientific notion, there was enough mixing in the early solar system to transport material from the sun's sizzling neighborhood and deposit it in icy deep-space comets.

It might have been like a gentle eddy in a stream or more like an artillery blast, but evidence from the Stardust mission shows that material from the sun’s vicinity traveled to the edge of the solar system, beyond Pluto, as the planets were born.

"Many people imagined that comets formed in total isolation from the rest of the solar system. We have shown that's not true," said Donald Brownlee, the University of Washington astronomer who is principal investigator, or lead scientist, for Stardust.

"As the solar system formed 4.6 billion years ago, material moved from the innermost part to the outermost part. I think of it as the solar system partially turning itself inside out," said Brownlee, the lead author of 183 on the primary paper detailing the first research results from the Stardust mission, published in the Dec. 15 edition of the journal Science. Brownlee is a coauthor of the other six papers on Stardust results being published in Science, which also are the subject of a news conference and scientific presentations at the fall meeting of the American Geophysical Union in San Francisco.

The National Aeronautics and Space Administration's Stardust mission was launched in February 1999 and met comet Wild 2 (pronounced Vilt) beyond the orbit of Mars in January 2004. The comet formed more than 4.5 billion years ago and had remained preserved in the frozen reaches of the outer solar system until 1974 when a close encounter with Jupiter shifted the comet's orbit to a path between Mars and Jupiter. After a 2.88 billion-mile journey, Stardust returned to Earth last January with a payload of thousands of tiny particles from Wild 2.

Among the biggest surprises, Brownlee said, was finding material that formed in the hottest part of the solar system.

"If those materials had gotten any hotter they would have vaporized," he said. "The most extreme particle was the second one we worked on in my lab. These types of particles are among the oldest things in the solar system."

That particle was a calcium-aluminum inclusion, a rare material seen in some meteorites and the very type of matter that scientists used as an argument for flying Stardust to less than 150 miles from Wild 2. At that close range, the fast-moving particles could have seriously damaged the spacecraft, but Brownlee and others felt it was necessary to take that risk if they were to have a chance to determine an upper limit of material that formed near the sun that ended up at the farthest fringes of the solar system.

"Truthfully, we really didn't expect to find anything from the inner solar system. Instead, it showed up in the second particle we looked at," he said. The scientists also found magnesium olivine, a primary component of the green sand found on some Hawaiian beaches and, like a calcium-aluminum inclusion, one of the first things to form in the cooling solar nebula.

Brownlee estimates that as much as 10 percent of the material in comets came from the inner solar system. "That's a real surprise because the common expectation was that comets would be made of interstellar dust and ice."

But interstellar dust has a glassy characteristic, he said, while the particles that formed around stars and are found in comets are partially crystalline. It was suggested previously that interstellar dust had been mildly heated to transform its glassy substance into the crystalline comet contents.

"What we've seen, I believe, is totally incompatible with that interpretation," Brownlee said. "The particles we've seen have been heavily heated. Astronomical interpretations will be affected by that."

Wild 2's personality seems to be different from that of comet Tempel 1, which was closely examined in a mission called Deep Impact. In that case, a probe crashed into the comet surface and the properties of the resulting dust were analyzed using the infrared part of the spectrum. But Brownlee notes that while Tempel 1 was examined remotely from a distance, Stardust returned actual samples for scientists to study.

"The comets may be different from each other, or different observations could simply be a result of the different techniques used to examine them. It is a challenge for us to understand how they are different and why," he said.

Besides the UW, other major partners for the $212 million Stardust project are NASA's Jet Propulsion Laboratory, Lockheed Martin Space Systems, The Boeing Co., Germany's Max-Planck Institute for Extraterrestrial Physics, NASA Ames Research Center, the University of Chicago, The Open University in England and NASA's Johnson Space Center.

Brownlee has noted the irony that the tiny specks of comet dust are being examined by some of the largest investigative tools, such as the 2-mile-long Stanford Linear Accelerator. But with more than 150 scientists studying dust from Wild 2, Stardust also is driving the advance of new technology, including development of the world's highest-resolution microscope at the Lawrence Livermore National Laboratory.

"We're doing things no one ever imagined we could do, even at the time we launched the mission," Brownlee said. "We've taken a pinch of comet dust and are learning incredible things."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>