Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculi carried out in the UGR will check the existence of rays in Titan’s atmosphere

06.11.2006
The mission started in 1997, when the satellite Cassini and the probe Huygens started together their trip Saturn, the second biggest planet of the solar system and famous for its rings.

At the end of 2004 they reached their objective and set their division in motion: Cassini, constructed by the NASA, heavier (6 tons), will orbit around the planet until it stops operating in 2008; small Huygens (just 350 kilos), a product of the European space agency (ESA), started its trip to Titan last Christmas and will reach its surface the 14th of January, providing data Cassini will send to Earth.

The main aim of this project, one of the most ambitious in the last 20 years, is checking if there are favourable conditions for life in Saturn and Titan. One of the factors they intend to study is electric activity in the atmosphere of the satellite as, according to one of the main scientific theories on the origin of life on Earth, this process could burst from electric discharges which “broke” the molecules, which where simpler at the beginning, generating more complex structures lead to organic molecules.

Storm measurement

That is why checking Titan’s electric activity is so important. HASI (Huygens Atmospheric Structure Instrument), is the main instrument to this end. It is situated in Huygens and it has been developed by European scientists with the collaboration of the Andalusian Institute for Astrophysics to cross the 170 kilometres of Titan’s atmosphere, they will carry out measurements that could not be done otherwise. Scientists presume that there must be electric activity, because on Earth, with a less dense atmosphere, about 2,000 storms cause 50 rays per second.

But the question is how to register storms in an experimental way. Different attempts carried out by Cassini, and even by mission Voyager (1980), have been unsuccessful. “The irrefutable proof of electric activity in the atmosphere of a planet or satellite are Schumann´s frequencies”, argues Juan Antonio Morente, researcher of the group ‘Electrodynamics of Transitory Phenomenon’ of the University of Granada (Universidad de Granada [http://www.ugr.es]), supervised by Alfonso Salinas. These frecuencias are like the fingertip of the atmospheric electric activity, as they remain stored in the large “soundbox” formed by the solid surface and the ionosphere.

Schumann predicted by mathematic calculus which would be the frequencies in which there would be electromagnetic resonances on earth’s atmosphere. However, “there is a gap between predictions and measurements, as the ionosphere is a system with leakages due to its high conductivity”, explains Morente. One of his research lines centres on creating numeric models simulating electromagnetic phenomenon in atmospheres of different planets or satellites. The model is based on a three-dimensional circuit called “electric analogue” which works just like the original system, in this case the electromagnetic cavity of the atmosphere.

Atmospheric models

They can be analysed through a computer program also developed by these scientists in the UGR [http://www.ugr.es]. This way, they can predict at what frequency electromagnetic resonances will be detected. The model recreating earth’s atmosphere “predicted with high accuracy the displacement of Schumann’s frequencies due to the leakage related to conductivity”, reminds Morente. Through these works, Konrad Schwingenschuch, of the Graz Institute for Space Research (Austria) and scientific coordinator of the instrument HASI in the mission Cassini-Huygens, got in touch with the researchers of Granada to carry out a model of Titan’s atmosphere.

The scientists of the UGR carried out several models from the present data on Titan’s aeronomy which incorporate different scientific hypotheses on unknown aspects of the satellite, such as the features of its surface or the atmosphere’s conductivity. This work, published in the journal of the American Astronomic Society Icarus in 2002, will be useful as a reference to adjust the measuring the probe Huygens will take of Titan’s activity. According to this model, what do they intend to achieve?

“There may be electric activity but it may not come out due to the density, high deepth and conductivity of the atmosphere. Or there may not be any activity, although it is a very dynamic atmosphere even with at such low temperatures (-180ºC). In any case, it is difficult to predict”, comments Juan Antonio Morente. The collaboration of the research group of Granada with the Graz Institute for Space Research continues in the mission Mars-Netlander, a project of the ESA which intends to study Mars´ magnetic field. The launch is predicted in 2007.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>