The Fastest Waves Ever Photographed …

Plasma physicists at the Universities of Texas and Michigan have photographed speedy plasma waves, known as Langmuir waves, for the first time using a specially designed holographic-strobe camera.

The waves are the fastest matter waves ever photographed, clocking in at about 99.997% of the speed of light. The waves are generated in the wake of an ultra-intense laser pulse, and give rise to enormous electric fields, reaching voltages higher than 100 billion electron volts/meter (GeV/m).

The waves' electric fields can be used to accelerate electrons so strongly that they may lead to ultra-compact, tabletop versions of a high-energy particle accelerators that could be a thousand times smaller that devices which currently exists only in large-scale facilities, which are typically miles long.

Until now, a critical element necessary for understanding interaction between electrons and accelerating wakes has been missing: the ability to see the waves.

The new photographic technique uses two additional laser pulses moving with the waves to image the wakefield ripples, enabling researchers to see them for the first time and revealing theoretically predicted but never-before-seen features.

The ability to photograph these elusive, speedy waves promises to be an important step towards making compact accelerators a reality.

The record-setting images will be presented next week at the 48th Annual Meeting of the American Physical Society's Division of Plasma Physics, which runs October 30-November 3, 2006, in Philadelphia, Pennsylvania.

Media Contact

James Riordon American Physical Society

More Information:

http://www.aps.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors