Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars too old to be trusted? A possible Stellar Solution to the Cosmological Lithium Problem

10.08.2006
Analysing a set of stars in a globular cluster with ESO's Very Large Telescope, astronomers may have found the solution to a critical cosmological and stellar riddle. Until now, an embarrassing question was why the abundance of lithium produced in the Big Bang is a factor 2 to 3 times higher than the value measured in the atmospheres of old stars. The answer, the researchers say, lies in the fact that the abundances of elements measured in a star's atmosphere decrease with time.

"Such trends are predicted by models that take into account the diffusion of elements in a star", said Andreas Korn, lead-author of the paper reporting the results in this week's issue of the journal Nature [1,2]. "But an observational confirmation was lacking. That is, until now."

Lithium is one of the very few elements to have been produced in the Big Bang. Once astronomers know the amount of ordinary matter present in the Universe [3], it is rather straightforward to derive how much lithium was created in the early Universe. Lithium can also be measured in the oldest, metal-poor stars, which formed from matter similar to the primordial material. But the cosmologically predicted value is too high to reconcile with the measurements made in the stars. Something is wrong, but what?

Diffusive processes altering the relative abundances of elements in stars are well known to play a role in certain classes of stars. Under the force of gravity, heavy elements will tend to sink out of visibility into the star over the course of billions of years. "The effects of diffusion are expected to be more pronounced in old, very metal-poor stars", said Korn. "Given their greater age, diffusion has had more time to produce sizeable effects than in younger stars like the Sun."

The astronomers thus set up an observational campaign to test these model predictions, studying a variety of stars in different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion.

Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times.

The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from.

"Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed."

"The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."

[1] "A probable stellar solution to the cosmological lithium discrepancy", by A.J. Korn et al.

[2] The team is composed of Andreas Korn, Paul Barklem, Remo Collet, Nikolai Piskunov, and Bengt Gustafsson (Uppsala University, Sweden), Frank Grundahl (University of Århus, Denmark), Olivier Richard (Université Montpellier II, France), and Lyudmila Mashonkina (Russian Academy of Science, Russia).

[3] High-precision measurements of the matter content of the Universe were made in recent years by studying the cosmic microwave background.

[4] Globular clusters are large aggregates of stars; over 100 are known in our galaxy, the Milky Way. The largest contain millions of stars. They are some of the oldest objects observed in the Universe and were presumably formed at about the same time as the Milky Way Galaxy, a few hundred million years after the Big Bang.

Henri Boffin | alfa
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>