Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going to Mars with new technologies

13.06.2006
At the very least the planned Martian expedition of 2018 will prove to be five times cheaper if its preparation utilises new technologies developed by Russian scientists. The researchers believe that such considerable savings can be made on transport costs.

The authors’ basic premise lies in the reduction of costs on obtaining energy en route and in its more rational use. In other words, the scientists have not only developed a technology that can make light and effective solar batteries in cheaper ways, but they have also found design solutions that enable the use of electric engines for almost the entire journey to Mars and back. Financial support for the scientists comes from the International Science and Technology Centre.

The first thing that the scientists propose to lighten the load, both literally and figuratively, is a new design of solar batteries for space. The researchers attempted to replace crystalline silicon and the even more expensive gallium arsenide with relatively inexpensive amorphous silicon. This replacement foresees a double advantage. Amorphous silicon can be sprayed by the metre onto a substrate ribbon and this is undoubtedly cheaper and technologically simpler than to stick pre-cultivated silicon crystals onto thin substrates.

However by itself amorphous silicon is a poor replacement for the crystalline version. To enhance the performance attributes of batteries made on its basis, the scientists have developed a special technology. Using an ultrafine laser beam and high-precision apparatus for its guidance, the authors learned to create ‘quantum pits’ in the initially irregular silicon layer, sections that are 2nm in size with a pre-set atomic structure. Situated in a strict order at a distance of 10nm from one another, these sections create a kind of artificial order in the silicon layer, transforming it into something akin to a genuine crystal. Such a pseudo-crystal in a battery works almost as effectively as a real one and the scientists’ forthcoming plans involve the gaining of 15% performance on these batteries.

If the steel substrate of the batteries is made thinner that usual, not 100 microns but 20 (and the researchers have already debugged this technique), the overall weight of the solar batteries will fall accordingly and, proportionately, the costs involved in getting them off the Earth and into space. This is where the savings come from; there is no need to lug superfluous tons of steel and fuel into space.

As a result the scientists calculate that there should be sufficient electrical energy to fly ‘on electricity’ and not on liquid fuel. To provide the required speed for the spacecraft, the authors have developed a new version of electric engine that operates not on xenon, a very rare and therefore expensive option, but on krypton or even (potentially) on argon.

‘To date engines of this kind have been used in the main on small satellites and then only to turn the satellite around,’ explains one of the project authors, the head of this direction at the Keldysh Research Centre Vitaly Semenov. ‘Xenon is used to create pull in them. This choice is not made by chance either. External electrons in solid atoms of this gas are situated far from the nucleus and, to ‘isolate’ them, to transform the gas into ionized plasma, is a relatively simple matter. Then the ready ionized xenon is dispersed in electrical fields and we achieve high speeds of its flow, thanks to which the craft moves in cosmic space.

‘Our solar batteries can “get hold of” sufficient energy in space to ionize cheaper and more accessible inert gases – krypton and argon. Of course this requires considerable energy expense compared with xenon, but the solar batteries and transformers are also specially designed, and they can handle this task.

‘As a result of these and certain other improvements, the costs of a Martian expedition will fall from $100 billion to $16-20 billion. Of course, the precise figures will be determined to a greater degree of accuracy by the project participant countries, and these issues are already of a political kind. As far as the scientific side of the matter is concerned, the preliminary research conducted by our team and our colleagues from the Korolev RSC Energia, Krasnaya Zvezda, IKI RAS and IMBP RAS has proved, at least in the laboratory and partially in orbital experiments, that our technologies do work and that they work very well. Further research is required, but the work done to date enables us to hope for the success both of our developments and for the Mars expedition as a whole.’

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/ISTC/sc.nsf/events/to-mars-with-new-technologies

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>