Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos = Order: WUSTL physicists make baffling discovery

06.04.2006


"Da police are not here to create disorder; dere here to preserve disorder." — Richard J. Daley, Chicago mayor, explaining to the media the role of the police during the riotous 1968 Democratic National Convention.



Police keep order. That’s why, for example, they issue tickets for "disturbing the peace." Thus the only logical conclusion to Mayor Daley’s famous quote above — other than dismissing it as the result of a tangled tongue — is sometimes disorder spawns order.

Sounds impossible, right?


Wrong.

According to a computational study conducted by a group of physicists at Washington University in St. Louis, one may create order by introducing disorder.

While working on their model — a network of interconnected pendulums, or "oscillators" — the researchers noticed that when driven by ordered forces the various pendulums behaved chaotically and swung out of sync like a group of intoxicated synchronized swimmers. This was unexpected — shouldn’t synchronized forces yield synchronized pendulums?

But then came the real surprise: When they introduced disorder — forces were applied at random to each oscillator — the system became ordered and synchronized.

"The thing that is counterintuitive is that when you introduce disorder into the system — when the [forces on the pendulums] act at random — the chaos that was present before disappears and there is order," said Sebastian F. Brandt, Washington University physics graduate student in Arts & Sciences and lead author of the study, which appeared in the January 2006 edition of Physical Review Letters.

Insights into other realms

The physicists’ research is not only hard to grasp for non-physicists, but puzzling for physicists, too. As supervisor Ralf Wessel, Ph.D., Washington University associate professor of physics said, "Every physicist who hears this is surprised."

Research on the role of disorder in complex systems is quite new and not well understood. Wessel hopes that one day its theoretical understanding will be better than it is today.

Nevertheless, the researchers believe the model could provide insights outside the realm of theoretical physics.

Neurons, for example, have been modeled as interconnected, or "coupled," oscillators because of the way they interact with one another. In the model, coupled oscillators can be imagined as being tethered to their nearest neighbor, thus influencing their movement. Neurons, on the other hand, may display repetitive electrical activity that can be influenced by the activity of neighboring neurons.

Though it’s a bit of a stretch, admits Babette K. Dellen, Ph.D., the study may help to solve previously unexplained observations. Dellen first studied the model system in a neurological context. She set the project aside and then Brandt joined the research group and became intrigued with the concept of disorder-induced synchronization and delved more deeply. Finally, the three put the paper together.

Dellen explains that neurons can exhibit synchronous activity in response to a stimulus. To this point, she said, nobody has come up with an adequate explanation. And Wessel said, "Maybe the details of the neurons are completely irrelevant. Maybe it is only a property of oscillators."

Oscillators like a child on a swing

A vital similarity between the model system and neurons is that they are both "nonlinear" — meaning that there is not a linear, or straight-ahead, correlation between the applied force and displacement. In other words, the oscillators in the model may be likened to a child on a swing. Within a small range, the child will move in constant proportion to how hard you push them — if you push twice as hard, they will go twice as far. But nearly all complex systems in nature, like the physicists’ model, are nonlinear. Once the child gets to a certain height, pushing twice as hard will not make the child go twice as far.

Neurons are composed of many elements and are typically nonlinear.

"When you hear your favorite music twice as loud you don’t double the pleasure," mused Brandt, explaining how one aspect of the brain — hearing — is nonlinear.

While other research has shown that disorder can create order, these studies often involved manipulating parameters within the systems such as changing pendulum length. The researchers say that their work is novel because it involves changing externally applied forces. Thus, they believe, their findings might have potential in the real world, where it would be more difficult to change parameters within the system — neurons, for example — but relatively simple to apply an external forcing.

"This is of course basic research," said Brandt. "But what you can learn from this is that complex systems ... sometimes behave in a very unexpected way, completely opposite to your intuition or expectation. It will be interesting to see if the mechanism that we have found can actually be put to some use."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>