Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Chandra Finds Evidence for Quasar Ignition

27.03.2006


New data from NASA’s Chandra X-ray Observatory may provide clues to how quasars "turn on." Since the discovery of quasars over 40 years ago, astronomers have been trying to understand the conditions surrounding the birth of these immensely powerful objects.


Chandra X-ray Image of 4C37.43


Hubble Optical Image of 4C37.43



Hot, X-ray producing regions around two distant quasars observed by Chandra are thought to have formed during their activation. These features are located tens of thousands of light years from the central supermassive black holes thought to power the quasars.

"The X-ray features are likely shock waves that could be a direct result of the turning on of the quasar about 4 billion years ago," said Alan Stockton of the University of Hawaii in Honolulu, and lead author of a report on this work published recently in The Astrophysical Journal.


The quasars, 4C37.43 and 3C249.1, showed no evidence for the existence of a much larger envelope of hot gas around the features, nor were the observed X-ray regions associated with radio waves from the quasars. These factors rule out possible explanations for the X-ray emitting clouds, such as the cooling of hot intergalactic gas, or heating by high-energy jets from the quasars.

"The best explanation for our observations is that a burst of star formation, or the activation of the quasar itself, is driving an enormous amount of gas away from the quasar’s host galaxy at extremely high speeds," said Hai Fu, a coauthor of the study who is also from the University of Hawaii.

Computer simulations of the formation of stars and the growth of black holes during a collision between two galaxies are consistent with this picture. The simulations, performed by Tiziana Di Matteo of Carnegie-Mellon University in Pittsburgh, Pennsylvania, and colleagues, show that the merger of galaxies drives gas toward the central regions where it triggers a burst of star formation and provides fuel for the growth of a central black hole.

The inflow of gas into the black hole releases a tremendous amount of energy, and a quasar is born. The power output of the quasar dwarfs that of the surrounding galaxy and expels gas from the galaxy in what has been termed a galactic superwind. The Chandra data provide the best evidence yet for a quasar-produced superwind.

Over a period of about 100 million years, the superwind will drive all the gas away from the central regions of the galaxy, quenching both star formation and further black hole growth. The quasar phase will end and the galaxy will settle down to a relatively quiet life. The tranquility of the galaxy will be interrupted from time to time as a small satellite galaxy is captured and provides food for the otherwise dormant supermassive black hole.

Other members of the research team were J. Patrick Henry, also of the University of Hawaii, and Gabriela Canalizo of the University of California, Riverside. NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency’s Science Mission Directorate. The Smithsonian Astrophysical Observatory provides science support and controls flight operations from the Chandra X-ray Center in Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu
http://chandra.nasa.gov
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>