Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First RAVE data release offers clues to Milky Way evolution

13.02.2006


An international team of astronomers released to the public the first data collected as part of the Radial Velocity Experiment, an ambitious spectroscopic survey aimed at measuring the speed, temperature, surface gravity and composition of up to a million stars passing near the sun.



The measurements, released at an astrophysics workshop at the Aspen Center for Physics in Colorado and available today online to other astronomers, includes examination of old "fossil" stars that were born when our Milky Way galaxy was in its infancy. Team members posit that such data may eventually provide evidence to back up theories that our galaxy has -- over time -- "cannibalized" other, smaller galaxies and is "digesting" them.

"Our research focuses on the oldest stars, and probes the earliest phases of the evolution of our home galaxy, the Milky Way," said Rosemary Wyse, a professor in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences and a member of the RAVE team. "The unprecedented sample available with RAVE will allow me -- and now, with the release of this data, others -- to test ideas of our origins laid out by various cosmological theories."


The team also includes members from the United States, Germany, Australia, Canada, the Netherlands, the United Kingdom, Slovenia, Italy, Switzerland and France.

The survey has been made possible by the unique capabilities of the "six-degree field" multi-object spectrograph on the 1.2-meter UK Schmidt Telescope of the Anglo-Australian Observatory, located at Siding Spring Observatory in New South Wales, Australia. This instrument is capable of obtaining spectroscopic information for as many as 150 stars at once, from an area of the sky equal to more than 150 times the area covered by the full moon.

"The data we are making public today is twice the sample size of any previous survey, and has extremely high quality," Wyse said. "Other astronomers can definitely use these data in their work. All they have to do is go to our Web site and download it."

The RAVE survey measures the velocities of stars along the line of sight, something that has previously been difficult to obtain for such large samples of stars. Data from RAVE’s first year of operation consists of information from some 25,000 stars, including measurement of their brightness, color and motion across the sky.

"This data set will provide a unique resource for all astronomers working in the field of galactic evolution and, with our public data release, the astronomical community can participate in our endeavor," says Tomaz Zwitter of the Ljubljana University in Slovenia and project scientist of the RAVE survey. "This first sample by itself is already two times the size of the previous largest survey of stars near the sun."

Matthias Steinmetz, director of the Astrophysical Institute Potsdam, and leader of the RAVE collaboration, predicted that "the full RAVE survey will provide a vast resource of stellar motions and chemical abundances, allowing us to answer fundamental questions of the formation and evolution of our galaxy."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.rave-survey.org

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>