Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researcher sees big impact of little cracks

19.01.2006


This atom-by-atom simulation shows a crack spreading through a brittle material. First the crack creates a clean slice across the surface, but as it gains speed it starts to gyrate, and the crack’s path becomes increasingly uneven. Image/Markus J. Buehler, MIT


An MIT researcher’s atom-by-atom simulation of cracks forming and spreading may help explain how materials fail in nanoscale devices, airplanes and even in the Earth itself during a quake. This work, which could impact a wide range of scientific and engineering disciplines, appears in the Jan. 19 issue of Nature.

"Classical theories of crack dynamics are only valid in a small range of material behavior," said author Markus J. Buehler, principal investigator in the Atomistic Mechanics Modeling Group in MIT’s Department of Civil and Environmental Engineering. "Our results represent a major breakthrough in understanding how cracks propagate in a variety of brittle materials, and our theory helps explain experimental and computational observations that have been poorly understood so far."

Past experiments show that cracks start out slow, creating a straight, clean slice across a flat-as-a-mirror surface. As the crack gains speed, at a certain point it starts to gyrate like an out-of-control snake, leaving in its wake an increasingly rough, uneven surface that eventually creates a chaotic branching pattern.



Surprisingly, this phenomenon happens in many different classes of brittle materials, including glasses, ceramics, polymers and semiconductors, but no one has fully understood the physics behind it.

Buehler and Huajian Gao of the Max Planck Institute for Metals Research in Stuttgart, Germany, and now at Brown University, simulated the action of atoms to study how materials behave under extreme conditions. Using massively large-scale molecular dynamics simulations, they uncovered the physics behind fractures and formed a new theory of how cracks propagate in brittle materials.

The researchers discovered that making sense of conflicting studies requires thinking of the material’s behavior as hyperelastic, meaning the atomic bonds are close to the breaking point.

"Hyperelasticity, which stems from atoms interacting according to the laws of quantum mechanics, has been neglected in most existing fracture theories," Buehler said. "Our results suggest that it is key to unresolved experimental observations in dynamic fracture.

"An important consequence of hyperelasticity is that elastic stiffening behaviors such as those in rubbery materials can have a dramatic effect on the instability dynamics of cracks," Buehler said. The new study shows that cracks in stiffening materials can suppress the chaotic pattern of spreading cracks and move faster than the speed of sound while creating flat-as-a-mirror surfaces.

Elizabeth Thomson | MIT
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>