Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet lab researcher exploring science behind commercial applications of liquid helium

12.12.2005


Picture a teaspoon of powdered sugar. As fine a substance as it is, there still are tremendous differences in the sizes of its individual particles. Some are so small, they move around randomly and are invisible to the naked eye.



Now, let’s say you wanted to choose only particles of a certain size from those in the spoon. Traditional technology and scientific techniques can separate quantities of particles of different sizes down to a few microns, but beyond that, it’s not currently possible to perform this operation at the submicron level. Being able to do so would allow for the production of certain types of drugs that are most effective when inhaled.

How small is a submicron? Consider that a micron is a mere 0.00004 of an inch. Yet unlocking the mystery of how to manipulate, measure and separate very tiny particles has tremendous applications for the pharmaceutical industry and could change how some medications are delivered and how effective they are.


That’s the backdrop for the research of Steven W. Van Sciver, a professor of mechanical engineering with the Florida A&M University/Florida State University College of Engineering and an expert in cryogenics (the study of low-temperature phenomena) at the National High Magnetic Field Laboratory in Tallahassee. Van Sciver is working with technology company Oxford Instruments on the first phase of a grant to help prove the concept behind a patent-pending cryogenic technique for particle separation from a few microns down to submicrons.

With funding from Oxford Instruments, Van Sciver is performing the basic science behind how particles behave in liquid helium. Helium turns into liquid only at very low temperatures (minus 452 degrees Fahrenheit, where virtually everything else is frozen solid). If helium is cooled to even lower temperatures, it becomes "superfluid," meaning that if placed in a closed loop it can flow endlessly without friction.

"Superfluid helium has extraordinary properties," said Van Sciver. "Because of its unique viscosity and heat conductivity, its flow can be controlled to a degree you can’t get with other fluids. It has lots of potential for commercial applications."

In a letter published in a recent issue of Nature Physics, Van Sciver wrote that when superfluid helium flows toward and then around a relatively large object, say the size of a small stone, it has a tendency to create whirlpools not just in the back, as would be expected, but also in the front. So a portion is flowing "counterflow," or in an opposite direction. This is a unique observation and a link in the chain of science that Van Sciver hopes ultimately will lead to development of a cryogenic technique for particle separation. (To view the abstract of Van Sciver’s letter, see www.nature.com/nphys/journal/v1/n1/full/nphys114.html.)

Toward this end, Van Sciver is moving forward on a research-and-development program funded by Oxford Instruments to establish the operating principles behind a device to separate particles. Proper sizing of particles is critically important for effective "aspiration" delivery of medication; some medications are much better tolerated when absorbed through the lungs rather than through the bloodstream.

"In order to deliver respiratory medications to the deep lung efficiently, careful engineering of the size and density of the microparticles in the drug is essential," said Neal Kalechofsky, technology development manager with Oxford Instruments, a global technology company that provides tools and systems for the physical science and bioscience sectors. "Through our partnership with FSU, we are exploring the extension of low-temperature technology to new applications in microparticle classification."

Steven W. Van Sciver | EurekAlert!
Further information:
http://www.magnet.fsu.edu
http://www.nature.com/nphys/journal/v1/n1/full/nphys114.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>