Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting light

14.10.2005


A team of scientists headed by Dr. Christoph Lienau of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin develops and utilizes novel nanoptical techniques for imaging structures that are many times smaller than the wavelength of light. The research is based on a special Scanning Near-Field Optical Microscope (SNOM), patented by MBI, providing extremely high optical resolution and flexible combination with different spectroscopic techniques. A microscope based on this patent was now built for the Research Centre Jülich (Forschungszentrum Jülich), where scientists will use it to examine optical absorption in thin nanostructured layers of silicon. These studies at the Jülich facility are aimed at increasing the efficiency of silicon-based thin-film solar cells.



“We need to know the local optical properties of the silicon structures”, says Jülich scientist Dr. Reinhard Carius. It is not sufficient to only know the morphology of the surface. Therefore, neither atomic-force microscopes nor other electron microscopes can help, because these yield information on the surface structure but only limited knowledge about their electro-magnetic properties. “The SNOM built by the colleagues at MBI allows us to investigate how light propagates in the silicon thin films”, says Carius. What’s more, the near-field microscope is highly versatile. Carius adds: “I know of no other place to get such a machine, that is why we asked the MBI to build a duplicate for us.”

So, what is it that makes scanning near-field optical microscopy so special? “We outsmart light with it”, says Dr. Christoph Lienau of the Max Born Institute. He and his colleagues have constructed the SNOM and got it patented. Lienau explains: “Normally, with visible light, one cannot image structures that are smaller than its wavelenght.” However, light can be regarded not only as a wave phenomenon but as a stream of particles as well. And these particles, called photons, go through seemingly impenetrable barriers. In quantum physics this is known as a tunneling process. “Photons are tunneling through tiny holes smaller than the wavelength of light”, explains Lienau, “and we count the photons and measure their properties.”


The tiny aperture through which the photons are tunneling is located at the very tip of a thin, metal-coated optical fiber. The scientists create these apertures in a controlled way by slightly moving the tip of the fibre into the sample that is to be examined. Then they send light through the fibre and measure how much light is emitted through the hole. Thus, they determine the size of the hole – in the current set-up of the microscope, the hole measures less than 50 nanometers (nm). 1 nm equals the billionth part of a meter. Depending on the colour, visible light has a wavelength of 400 to 800 nm. “We achieve a spatial resolution of 50 nm with our optical near-field microscope”, says Lienau, “that is up to fifteen times smaller than the wavelength of light.”

However, the images generated by SNOM do not directly resemble images obtained by conventional optical microscopy or photography. This is due to the fact that the SNOM-technique belongs to the family of scanning probe methods. In a way, it is similar to Scanning Tunneling Microscopy (STM) or Atomic Force Microscopy (AFM). The tip of the optical fiber scans the sample point by point. If you compare the different methods, you could say that STM or AFM yield information in the same way as a blind person gets information by tactile sensitivity. Touching an object tells you about the surface geometry, and about properties like temperature or maybe electric charge, but it gives no information on colour or transparency. The SNOM-technique overcomes this problem.

The machine built by MBI works in the temperature range between 10 and 300 Kelvin. That equals minus 260 degrees Celsius up to room temperature. Only the sample is cooled by liquid helium. The sensitive scanning module and the tip, however, are located in a vacuum chamber at room temperature, greatly increasing the ease of operation.

The Scanning Near-Field Optical Microscope is roughly the size of a washing machine. It is easily integrable and is easily integrable into convential optical setups, providing, e.g., spectral and/or temporal resultion. Before receiving the order from Jülich, the MBI scientists already built two similar SNOMs for other research groups. The scientists tested the machine in advance and will deliver it to Jülich on October 17. The tests ended highly successful, says Dr. Lienau. Adds Dr. Reinhard Carius: „My colleagues and I at the Research Centre in Jülich are very pleased about the excellent collaboration with the Max Born Institute. We are glad that we have found such reliable partners.”

Dr. Christoph Lienau | alfa
Further information:
http://www.mbi-berlin.de

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>