Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Provide New Picture of Semiconductor Material

05.10.2005


For almost a decade, scientists thought they understood the surface structure of cubic gallium nitride, a promising new crystalline semiconductor. Research by an interdisciplinary team of nanoscientists from Ohio University and the Universitat Autònoma de Barcelona, however, turns that idea on its head.



Their study published in the Sept. 30 online issue of the journal Physical Review Letters provides a fresh – and they argue, more accurate – look at the surface structure of the crystalline material, which could be used in lasers and other electronic devices.

Nancy Sandler, an assistant professor of physics and astronomy at Ohio University, and Pablo Ordejón, a Barcelona professor specializing in the algorithm used in the project, calculated several properties using the currently accepted model and obtained new images of the crystal’s surface. Experimentalists Hamad Al-Brithen and his Ph.D. adviser Arthur Smith, Ohio University associate professor of physics and astronomy, recently had used scanning tunneling microscopy to capture an image of the surface.


When they compared the model image with the experimental image, the researchers found that the theory and the experiment aligned – except for one important detail. Researchers previously thought that the atoms on the surface were arranged in groups of four in one direction but only one in the other. The new finding shows that they are in groups of four in one direction but in groups of three in the other direction, Smith said. The discrepancy calls into question the model scientists have accepted for the last seven years and the understanding of the surface structure.

The surface of the material is not easy to work with, Smith noted, because it’s sensitive to how scientists handle it. A different structure could be created simply by exposing the crystalline surface to other elements. For example, the accidental contact of arsenic (an element commonly used in semiconductor growth) with the crystal surface has affected other researchers’ data in the past.

“The relevance of modeling surfaces is that the ordering of atoms on a surface can be substantially different from the one in the bulk of the material,” Sandler said.

The new research could help scientists learn how to use cubic gallium nitride as a new semiconductor for lasers and other electronic devices such as display technologies and bright blue light-emitting diode (LED) applications. It also may help them grow layers of the material more precisely to create technological applications. But before scientists can make use of this potentially valuable material, they first must understand its basic properties so they can begin tackling its drawbacks, said Smith, director of Ohio University’s Nanoscale and Quantum Phenomena Institute.

“Cubic gallium nitride is more difficult to grow [than the popular hexagonal type of gallium nitride crystal],” said Smith. “But its cubic properties make it more compatible with other commonly used materials, and so it has more potential for integration into mainstream devices.”

The research was supported by grants from the National Science Foundation and Spain’s Ministry of Science and Technology and its Ministry of Education and Science.

This project is the first major paper published by Ohio University’s Nanoscale Interdisciplinary Research Team, a collaboration of researchers funded by the NSF.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>