Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY, Lehman experts find ’magnetic flames’ in molecular magnets exhibit properties akin to fire

23.08.2005


In a groundbreaking experiment, researchers from The City College of New York (CCNY) and Lehman College have measured the speed of magnetic avalanches and discovered that the process is analogous to the flame front of a flammable substance. The discovery of a “magnetic flame” could make it easier for engineers to study the dynamics of fire.



Magnetic avalanches occur when the polarity of a molecular nanomagnet is changed suddenly and sufficient energy is released to cause a chain reaction that changes the polarity of the other molecular nanomagnets in a crystal.

Yoko Suzuki, a graduate student at The City College, devised an experiment to measure the progress of a molecular avalanche through a crystal of Mn12 (manganese) acetate using an array of tiny micrometer sized Hall sensors placed underneath the specimen. Ms. Suzuki observed that the avalanche began at one end of the crystal and propagated at speeds of a few meters per second in the form of a “flame” front that released magnetic energy into the crystal.


“Molecular nanomagnets are the first-known magnetic materials in which the magnetic energy density is sufficient to ignite a ‘magnetic flame,’” said Dr. Myriam P. Sarachik, Distinguished Professor of Physics at CCNY and Ms. Suzuki’s mentor. “This could open a potentially important new road for investigating the dynamics of fire in flammable substances because, unlike chemical burning, magnetic burning is non-destructive, reversible and more readily controlled.”

The investigation into the propagation of magnetic avalanches grew out of a theory suggested by Eugene Chudnovsky and Dmitry Garanin. Dr. Chudnovsky, Distinguished Professor of Physics at Lehman College, collaborated with Ms. Suzuki and Professor Sarachik in the present work.

Chudnovsky and Garanin had theorized that under the right circumstances a magnetic system could be made to emit laser type radiation. They suggested that a magnetic avalanche might initiate such laser action. Measuring the speed of the avalanche would aid in the examination of the theory.

When experimentalists at CCNY discovered that the avalanche propagates at a constant speed of a few meters per second, Professor Chudnovsky proposed that the effect is, in fact, “magnetic burning”. Comparison between theory and experiment confirmed his conjecture.

A paper reporting the discovery of “magnetic burning” by Ms. Suzuki, Professors Sarachik and Chudnovsky and coauthors has been accepted for publication in Physical Review Letters. In addition to CCNY and Lehman College, scientists from the Weizmann Institute in Israel and the University of Florida participated in the project, providing the Hall sensors and crystals, respectively.

Jay Mwamba | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>