Ariane 5 lifts record payload into space

This morning an Ariane 5G launcher lifted off from Europe’s Spaceport in French Guiana. On board was the largest telecommunications satellite ever to be placed into geostationary transfer orbit.


The mission was initially delayed during the two-hour-long launch window to verify telemetry readings from Ariane 5’s mobile launch table, and the countdown subsequently resumed for an early morning takeoff from the ELA-3 launch zone.

The heavyweight THAICOM 4 (IPSTAR) satellite had a lift-off mass of almost 6500 kg. Before this morning’s launch, the record for the heaviest telecommunications satellite to be placed into orbit belonged to the Anik F2 satellite, launched by an Ariane 5 launcher in July 2004.

THAICOM 4, built for Shin Satellite Plc of Thailand, will provide businesses and consumers throughout Asia, Australia and New Zealand with various levels of Internet access services. The satellite has a total data throughput capacity of over 45 Gbps. This is the fourth Shin Satellite to be launched by an Ariane vehicle. An Ariane 4 vehicle launched the first satellite in 1993.

The next launch to take place from Europe’s Spaceport will be Flight 168, an Ariane 5G dual launch mission scheduled for 29 September.

Media Contact

Marc Toussaint alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors