Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover most Earth-like extrasolar planet yet

14.06.2005


The world’s preeminent planet hunters have discovered the most Earth-like extrasolar planet yet: a possibly rocky world about 7.5 times as massive as the Earth.



This hot "super-Earth," just 15 light years away, travels in a nearly circular orbit only 2 million miles from its parent star, Gliese 876, and has a radius about twice that of Earth. All the nearly 150 extrasolar planets discovered to date that are orbiting normal stars have been larger than Uranus, an ice giant about 15 times the mass of Earth. "This is the smallest extrasolar planet yet detected and the first of a new class of rocky terrestrial planets," said team member Paul Butler of the Carnegie Institution in Washington. "It’s like Earth’s bigger cousin."

"This planet answers an ancient question," said team leader Geoffrey Marcy, professor of astronomy at the University of California, Berkeley. "Over 2,000 years ago, the Greek philosophers Aristotle and Epicurus argued about whether there were other Earth-like planets. Now, for the first time, we have evidence for a rocky planet around a normal star."


Marcy, Butler, theoretical astronomer Jack Lissauer of NASA/Ames Research Center, and post-doctoral researcher Eugenio J. Rivera of the University of California Observatories/Lick Observatory at UC Santa Cruz presented their findings today (Monday, June 13) during a press conference at the National Science Foundation (NSF) in Arlington, Va.

Part of a system that includes two other Jupiter-size planets, the new rocky planet whips around its star in a mere two days, and is so close to the star’s surface that the astronomers say its temperature probably tops 200 to 400 degrees Celsius (400 to 750 degrees Fahrenheit) - oven temperatures far too hot for life as we know it. Nevertheless, the ability to detect the tiny wobble that the planet induces in the star gives them confidence that they will be able to discover even smaller rocky planets in orbits more hospitable to life.

The team measures a minimum mass of 5.9 Earth masses for the new planet, which is orbiting Gliese 876 with a period of 1.94 days at a distance of 0.021 astronomical units (AU), or 2 million miles. Though the team has no proof that the planet is rocky, its low mass precludes it from retaining gas like Jupiter. Three other purportedly rocky extrasolar planets have been reported, but they orbit a pulsar, the flashing corpse of an exploded star.

Gliese 876 (or GJ 876) is a small, red star known as an M dwarf – the most common type of star in the galaxy. It is located in the constellation Aquarius, and, at about one-third the mass of the sun, is the smallest star around which planets have been discovered. Butler and Marcy detected the first planet in 1998, and it proved to be a gas giant about twice the mass of Jupiter. Then, in 2001, they reported a second planet, another gas giant about half the mass of Jupiter. The two are in resonant orbits, the outer planet taking 60 days to orbit the star, twice the period of the inner giant planet.

Data on the Gliese 876 system, gathered from research the astronomers conducted at the Keck Observatory in Hawaii, were analyzed by Lissauer and Rivera in order to model the unusual motions of the two known planets. Three years ago, they got an inkling that there might be a smaller, third planet orbiting the star. In fact, if they hadn’t taken account of the resonant interaction between the two known planets, they never would have seen the third. "We had a model for the two planets interacting with one another, but when we looked at the difference between the two-planet model and the actual data, we found a signature that could be interpreted as a third planet," Lissauer said.

A three-planet model consistently gave a better fit to the data, added Rivera. "But because the signal from this third planet was not very strong, we were very cautious about announcing a new planet until we had more data," he said.

Recent improvements to the Keck Telescope’s high-resolution spectrometer (HIRES) provided the crucial new data. Vogt, who designed and built HIRES, worked with the technical staff in the UC Observatories/Lick Observatory Laboratories at UC Santa Cruz to upgrade the spectrometer’s CCD (charge coupled device) detectors last August. "It is the higher precision data from the upgraded HIRES that gives us confidence in this result," Butler said.

The team now has convincing data for the planet orbiting very close to the star, at a distance of about 10 stellar radii. That’s less than one-tenth the size of Mercury’s orbit in our solar system. "In a two-day orbit, it’s about 200 degrees Celsius too hot for liquid water," Butler said. "That tends to lead us to the conclusion that the most probable composition of this thing is like the inner planets of this solar system - a nickel/iron rock, a rocky planet, a terrestrial planet."

"The planet’s mass could easily hold onto an atmosphere," noted Laughlin, an assistant professor of astronomy at UC Santa Cruz. "It would still be considered a rocky planet, probably with an iron core and a silicon mantle. It could even have a dense steamy water layer. I think what we are seeing here is something that’s intermediate between a true terrestrial planet like the Earth and a hot version of the ice giants Uranus and Neptune."

A paper detailing the team’s results has been submitted to The Astrophysical Journal. Coauthors on the paper are Steven Vogt and Gregory Laughlin of the Lick Observatory at the University of California, Santa Cruz; Debra Fischer of San Francisco State University; and Timothy M. Brown of NSF’s National Center for Atmospheric Research in Boulder, Colo.

Combined with improved computer software, the new CCD detectors designed by this team for Keck’s HIRES spectrometer can now measure the Doppler velocity of a star to within one meter per second - human walking speed - instead of the previous precision of 3 meters per second. This improved sensitivity will allow the planet-hunting team to detect the gravitational effect of an Earth-like planet within the habitable zone of M dwarf stars like Gliese 876. "We are pushing a whole new regime at Keck to achieve one meter per second precision, triple our old precision, that should also allow us to see Earth-mass planets around sun-like stars within the next few years," Butler said. "Our UC Santa Cruz and Lick Observatory team has done an enormous amount of optical and technical and detector work to make the Keck telescope a rocky planet hunter, the best one in the world," Marcy added.

Lissauer also is excited by another feat reported in the paper submitted to The Astrophysical Journal. For the first time, he, Rivera and Laughlin have determined the line-of-sight inclination of the orbit of the stellar system solely from the observed Doppler wobble of the star. Using dynamical models of how the two Jupiter-size planets interact, they were able to calculate the masses of the two giant planets from the observed shapes and precession rates of their oval orbits. Precession is the slow turning of the long axis of a planet’s elliptical orbit.

They showed that the orbital plane is tilted 40 degrees to our line of sight. This allowed the team to estimate the most likely mass of the third planet as 7.5 Earth masses. "There’s more dynamical modeling involved in this study than any previous study, much more," Lissauer said.

The team plans to continue to observe the star Gliese 876, but is eager to find other terrestrial planets among the 150 or more M dwarf planets they observe regularly with Keck. "So far, we find almost no Jupiter mass planets among the M dwarf stars we’ve been observing, which suggests that, instead, there is going to be a large population of smaller mass planets," Butler noted.

The astronomers’ research was supported by NSF, the National Aeronautics and Space Administration, the University of California and the Carnegie Institution of Washington.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>