Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini’s Radar And Vims Instruments Eye Impact Crater On Titan

28.04.2005


The Cassini spacecraft has seen a 50-mile-diameter impact crater on Titan with different instruments on separate flybys, giving scientists new information on impact-crater formation on Saturn’s giant moon.

They’ve released a composite image of one of Titan’s most prominent impact craters as previously seen by Cassini’s radar and recently seen by its Visual and Infrared Mapping Spectrometer (VIMS).

The composite image is online at saturn.jpl.nasa.gov and at uanews.org.



The radar image was taken during the Cassini spacecraft’s Feb. 15, 2005 Titan flyby, and the VIMS images were taken during its April 16, 2005 Titan flyby, said Robert H. Brown of The University of Arizona, head of the VIMS experiment. Brown released the composite image at the European Geosciences Union meeting in Vienna, Austria, on Monday (April 25).

In radar, the crater and its ejecta blanket are bright. In radar, brighter surfaces mean rougher terrains, or else terrains tilted towards the radar. At VIMS infrared wavelengths, the crater appears dark and the ejecta blanket is bright, showing that the crust on the crater floor is different material than the ejecta.

"The composite image highlights the differences and similarities in how two instruments see the same thing," Brown said. "It shows the power of combining instruments when you are trying to understand objects in the Saturnian system."

VIMS is essentially a camera that takes pictures in 352 different colors at the same time. The colors cover the visible spectrum and into the infrared, or from three-tenths of a micron up to five and one-tenth microns. (A micron is one millionth of a meter.) Scientists can identify the chemical composition of the surfaces, atmospheres and rings of Saturn and its moons using VIMS.

Cassini began a 4-year-or-more exploratory tour of the Saturn system in July 2004. It has seen two impact craters on Titan so far.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The radar instrument team is based at JPL, working with team members from the United States and several European countries. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson.

This three-panel image shows one of Titan¹s most prominent impact craters in an infrared-wavelength image (left), radar image (center) and in the false-color image (right). The Cassini radar imaged this crater during Cassini¹s third flyby of Titan, on Feb. 15, 2005, (see PIA07368). The crater, located at 16 degrees west, 11 degrees north, is about 80 kilometers (50 miles) in diameter and is surrounded beyond that by a blanket of material thrown out of the crater during impact. In radar, brighter surfaces mean rougher terrains, or else terrains tilted toward the radar.

Two Titan flybys later, on April 16, the visual infrared mapping spectrometer on Cassini obtained images of the same crater. The panel on the left is an image at the 2.0 micron wavelength, showing that the crater has a dark floor and a small bright area in the center. The crater is surrounded by bright material, which has a very faint halo slightly darker than the surrounding dark material. Compare the radar image with the visual infrared mapping spectrometer image. Both the crater and the blanket of surrounding material (called ejecta) are bright at radar wavelengths; in the infrared, the crater itself is dark and this blanket of material is quite bright. In radar, the faint halo surrounding the blanket of material is quite similar in appearance to the rest of the ejecta blanket.

The right hand panel is a false-color visual infrared mapping spectrometer image of the crater at lower resolution. It shows the faint halo to be slightly bluer than surrounding material. That the material is bluer than its surroundings, while also being darker, suggests that the faint halo is somewhat different in composition. This suggests that the composition of Titan¹s upper crust varies with depth, and various materials were excavated when the crater was formed.

The same structure appearing so different to different instruments illustrates the importance of multiple instruments studying such phenomena. The Cassini spacecraft, being the most interdisciplinary spacecraft ever flown, strongly embodies such an approach.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The radar instrument team is based at JPL, working with team members from the United States and several European countries. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. For more information about the visual and infrared mapping spectrometer visit http://wwwvims.lpl.arizona.edu/. Credit: NASA/JPL/University of Arizona

Lori Stiles | UA News Services
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>