Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwarf galaxy has giant surprise

13.01.2005


Huge gas disk may be similar to stuff of early universe



An astronomer studying small irregular galaxies has discovered a remarkable feature in one of them that may provide key clues to understanding how galaxies form and the relationship between the gas and the stars within galaxies.

Liese van Zee of Indiana University Bloomington, using the National Science Foundation’s Very Large Array radio telescope in New Mexico, found that a small galaxy 16 million light-years from Earth is surrounded by a huge disk of hydrogen gas that has not been involved in the galaxy’s star-formation processes and may be primordial material left over from the galaxy’s formation. "If that’s the case, then we may have found a nearby sample similar to the stuff of the early universe," van Zee said. "Why the gas in the disk has remained so undisturbed, without stars forming, is somewhat perplexing. When we figure out how this happened, we’ll undoubtedly learn more about how galaxies form," she said.


She presented her findings on Wednesday (Jan. 12) at the national meeting of the American Astronomical Society in San Diego, Calif.

The galaxy van Zee studied, called UGC 5288, had been regarded as just one ordinary example of a numerous type called dwarf irregular galaxies. As part of a study of such galaxies, she had earlier made a visible-light image of it at Kitt Peak National Observatory in Arizona. When she observed the galaxy later using the radio telescope, she found that it is embedded in a huge disk of atomic hydrogen gas. In visible light, the elongated galaxy is about 6,000 by 4,000 light-years, but the hydrogen-gas disk, seen with the VLA, is about 41,000 by 28,000 light-years. "The gas disk is more than seven times bigger than the galaxy we see in visible light," she said.

The hydrogen disk can be seen by radio telescopes because hydrogen atoms emit and absorb radio waves at a frequency of 1420 MHz, a wavelength of about 21 centimeters. A few other dwarf galaxies have large gas disks, but unlike these, UGC 5288’s disk shows no signs that the gas was either blown out of the galaxy by furious star formation or pulled out by a close encounter with another galaxy. "This gas disk is rotating quite peacefully around the galaxy," van Zee explained. That means, she said, that the gas around UGC 5288 most likely is pristine material that has never been "polluted" by the heavier elements produced in stars.

What’s surprising, said Martha Haynes, an astronomer at Cornell University in Ithaca, N.Y., is that the huge gas disk seems to be completely uninvolved in the small galaxy’s star-formation processes. "You need the gas to make the stars, so we might have thought the two would be better correlated. This means we really don’t understand how the star-forming gas and the stars themselves are related," Haynes said.

It’s exciting to find such a large reservoir of apparently unprocessed matter, Haynes said. "This object and others like it could be the targets for studying pristine material in the universe," she said.

Haynes was amused that a galaxy that looked "boring" to some in visible-light images showed such a remarkable feature when viewed with a radio telescope. "This shows that you can’t judge an object by its appearance at only one wavelength. What seems boring at one wavelength may be very exciting at another," Haynes said.

The National Radio Astronomy Observatory is operated under cooperative agreement by Associated Universities Inc.

More information is available from Liese van Zee at 812-855-0274, vanzee@astro.indiana.edu.

Hal Kibbey | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>