Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paving the way for pioneers

27.10.2004


Ming Zhang’s cosmic radiation research takes first step in missions to Mars, moon base

As American space exploration fulfills promises for a new era of long-term moon colonization and a mission to Mars, the research of Florida Institute of Technology space physicist Ming Zhang will become more important to the lives of each and every astronaut. While his research on cosmic radiation has its roots in pure science, the practical applications of what he has learned about space weather are matters of life and death.

With more than $1 million in NASA funding, Zhang is researching cosmic and energetic solar radiation, seeking how the two space weather components affect human beings, both as space travelers and as the end-user of satellite technology. "America wants to send humans to Mars and to colonize the moon," said Zhang. "But the natural radiation that exists in space is a big concern since it will prove toxic over time and can reach lethal amounts a few times a decade."



In the vacuum of space, energetic particle radiation from the galaxy and from our sun varies in intensity and energy. This variation is in concert with the 11-year solar cycle. Zhang’s research is determining how and why the solar cycle changes the energetic particle fluxes in our geospace environment and throughout the solar system. For Zhang and his fellow space physicists, this research provides clues into the structure of our galaxy, the origin of all galaxies, as well as the structure and dynamics of our sun. For our astronauts, this knowledge may one day prove life saving.

"We know that the sun has an 11-year cycle from active to dormant; these are the solar seasons" Zhang said. "When the sun is most active, a burst of solar radiation could kill an unprotected astronaut very quickly or cripple a spacecraft. In a radiation burst, the effect on the body would be much like the radiation from a nearby nuclear explosion."

NASA’s interplanetary travel itineraries, however, cannot be limited to the only periods when the sun is dormant. "Cosmic rays coming from outside the solar system are high-energy charged particles, many times more damaging than an X-ray. These particles are most likely produced by supernovae in the galaxy," Zhang said. "These rays can penetrate the human body easily and mutate or kill DNA in the cells along their paths. The mutated DNA can lead to cancer and other alteration of the cellular structures."

The catch-22 is that an active sun produces a more chaotic solar wind, reducing the intensity of cosmic rays and thus protecting astronauts. When the sun is dormant, cosmic radiation is much higher. "For the astronaut, it really is a case of picking your poison," Zhang said. "There is either a period of higher intensity cosmic rays around solar minimum or a high probability of large radiation burst during solar maximum.

NASA was aware of the radiation dangers when it first planned the original missions to the moon. At the time, however, they were less concerned about cosmic radiation because the missions were short. Scientists are just now learning how dangerous cosmic rays are to people and satellites.

Zhang’s research is also helping scientists understand how to predict space weather, particularly when and where to expect large solar bursts.

"By forecasting space weather, we can protect newer satellites, which have smaller electronics that are more susceptible to high-energy radiation. We cam also protect people on Earth by advising airlines to divert flights away from the polar caps," Zhang said. While Earth’s magnetic field protects us from both cosmic and solar radiation, penetration is easiest at the polar caps.

As Zhang continues his space weather research, he and his fellow space physicists at Florida Tech’s Geospace Physics Laboratory (GPL), Drs. Hamid Rassoul, Joseph Dwyer, Brian Ball, and Gang Qin, are unlocking secrets to the universe that were beyond the scope of speculation a few decades ago.

"We know that solar activity modulates cosmic rays, even to the far boundary of the solar system," Rassoul said. "Indeed, using recent observations from NASA’s old work horses, the Voyager 1 and 2 spacecraft, Zhang and Ball found that the intensity of cosmic rays at ~90 AU is still strongly modulated by solar activity. What we are trying to understand is how these changes occur, and what they mean for us and our space investments."

Jay Wilson | EurekAlert!
Further information:
http://www.fit.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>