Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini-Huygens makes first close approach to Titan

26.10.2004


Today the NASA/ESA/ASI Cassini-Huygens spacecraft makes a fly-by of Saturn’s largest moon Titan - the closest ever performed.

At the time of the closest approach, which is scheduled for 18:44 CEST, the spacecraft will be travelling only 1200 kilometres above the surface of the moon, almost grazing the outer atmosphere, at a speed of six kilometres per second (21 800 kilometres per hour)!

Confirmation that the fly-by was successful and that all the data were received will not take place until 03:30 CEST on 27 October.



This fly-by not only allows important surface science to be performed, such as radar analysis at close quarters, but also it significantly changes the orbit of the spacecraft around Saturn. Currently Cassini-Huygens has an orbital period of four months, which will change to 48 days, thus setting the course for the next close Titan fly-by on 13 December 2004 and the Huygens probe release on 25 December.
Several of the observations performed during this fly-by will provide important information for ESA’s Huygens team, who will be using the data gathered to double-check atmospheric models for entry and descent on 14 January 2005.

The Huygens probe will need to perform reliably in some of the most challenging and remote environments ever attempted by a man-made object. On this pass, the Huygens touchdown site will be visible at around 167 degrees East and 10.7 degrees South on the sunlit face of Titan before reaching the point of closest approach. Data from the imaging and radar instrumentation on board Cassini-Huygens should provide a tantalising idea of what the surface of Titan could be like. A second view of the Huygens touchdown site will be possible on the second close fly-by in December.

Jean-Pierre Lebreton, ESA’s Huygens Mission Manager and Project Scientist, said: “This first close-up look at Titan should enable us to find out just how precisely our atmospheric models fit with the real situation and of course we are excited about the prospect of discovering just what type of surface the Huygens probe could impact on early next year.”

Today’s fly-by will also be looking at other aspects of Titan which, although it is the second largest moon in the Solar System after Jupiter’s Ganymede, we know relatively little about. The instruments on board the Cassini orbiter will be looking at the surface characteristics, atmospheric properties and interactions with Saturn’s magnetosphere. Huygens is dormant during the fly-by.

The first images are expected at 03:30 CEST on 28 October. However, at the point of closest approach, Titan will have an apparent size far exceeding the field of view of the Cassini orbiter’s narrow-angle camera. Details below a 100-metre resolution may be seen if the camera can pierce the haze and fog. Spectacular multicolour images at 1-2 kilometre resolution are also anticipated from the Visual Infrared and Mapping Spectrometer and may reveal details about Titan surface structure and composition.

However, the excitement does not stop after 26 October. On 28 October, at about 12:30 CEST, there is a close encounter with Tethys, another of the significant moons of Saturn. Tethys is a ball of solid ice about 1060 kilometres in diameter which orbits Saturn at a distance of 295 000 kilometres. The Cassini-Huygens spacecraft will pass within 246 000 kilometres of this moon at a speed of 13.8 kilometres per second. At this distance the narrow-angle camera should be able to resolve features down to about 1.4 kilometres in size.

Guido de Marchi | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMB2E0A90E_0.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>