Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tame electron beams, bringing ’table top’ particle accelerators a step closer

30.09.2004


Scientists from the UK and the USA have successfully demonstrated a new technique that could help to shrink the size and cost of future particle accelerators for fundamental physics experiments and applications in materials and biomedicine.



Using the huge electric fields in laser-produced plasmas, they have accelerated beams of electrons close to the speed of light, in an important step towards the development of a working laser electron accelerator that could sit on a table top.

The researchers from Imperial College London, CCLRC Rutherford Appleton Laboratory (RAL), University of Strathclyde, UK, and University of California Los Angeles, USA, report their findings in Nature today (30 September). "It’s the first time that a real electron beam has been generated by these methods," said Professor Karl Krushelnick of Imperial College London, leader of the research group.


The next generation of particle accelerators using existing technology will be many kilometres in size and likely cost billions of pounds, but laser electron accelerators may offer a cheaper and smaller alternative says Professor Krushelnick. "Ultimately our work could lead to the development of an accelerator that scientists could put in a university basement," he says. "Such a small-scale local facility would give many scientists the ability to run experiments that currently they can only do at national or international centres." "Who knows, one day you might even do high energy physics in a university laboratory. It would be strange but it’s not impossible to imagine."

Electrons in accelerators travel so close to the speed of light that their ’speed’ is referred to in terms of energy. Electrons clocked closest to the speed of light are said to be at ’relativistic energies’. Using a high power, short-pulse laser system the researchers demonstrated they could accelerate beams of electrons directly from the plasma to energies up to 100MeV, over a distance of only one mm.

Previous measurements of electrons accelerated by lasers had shown that they had a large spread in energy, making them useless for applications requiring any degree of precision. "It is imperative you know the energy of the electron beam for much use to be made of it," says Stuart Mangles, Imperial College post-graduate student and lead author on the Nature paper. "Now we’ve shown we can make good quality electron beams with a narrow energy spread. They have incredibly short pulse duration and also have very low emittance, which means that they are very focusable."

Using RAL’s short-pulse high power laser system, ASTRA, the team showed that for particular plasma densities and laser focusing conditions, the plasma waves produced during the interaction could grow so large that they ’break’ and inject short bunches of electrons into the adjacent wave. Just like a surfer picking up energy from an ocean wave, the electrons in the laser pick up energy from waves in the plasma. "It was serendipity," said Professor Krushelnick. "We found the laser pulses actually self-inject electrons at the right phase."

The latest developments are propelled by advances in laser technology. The power in the ASTRA 20 terawatt laser is many times the power generation capacity of the UK but the pulse length is only a tiny fraction of a second, about 40 femtoseconds. The ratio of a femtosecond to a minute is about the same as the ratio of a second to the age of the universe, added Professor Krushelnick.

The Imperial group, which has been working in this area for over 15 years, conceived and carried out the experiments at the Council for the Central Laboratory of the Research Councils’ Rutherford Appleton Laboratory near Oxford. This work was supported by EPSRC and Research Councils UK under the Basic Technology Programme.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>