Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL’s Spallation Neutron Source warms up for 2006

27.09.2004


The warm section will provide 20 percent of the total acceleration of the Spallation Neutron Source’s linear accelerator.


With the recent "warm commissioning" of its linear accelerator, Oak Ridge National Laboratory’s Spallation Neutron Source (SNS) has passed a crucial test and milestone on its way to completion in 2006.

The SNS’s linear accelerator, or linac, is composed of two sections: the "warm," or room temperature section, and a superconducting section that operates at temperatures hundreds of degrees below zero. Los Alamos National Laboratory, part of the team of six DOE national laboratories collaborating on the SNS construction project, is responsible for the warm linac. "The successful commissioning of the warm linac is another step toward the 2006 completion of the SNS, and again demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope," said SNS Director Thom Mason.

The warm section will provide 20 percent of the total acceleration of the 1,000-foot-long linac. The linac’s superconducting section, provided by the Thomas Jefferson National Accelerator Facility, will provide 80 percent of linac acceleration. Testing also has begun of components of the superconducting portion, which consists of niobium cavities chilled by liquid helium to minus 456 degrees Fahrenheit.



Members of the Los Alamos SNS Division celebrated a job well done when components of the warm linac were shipped from the New Mexico laboratory to the project site in East Tennessee in April. "Professionally, this was the job of a lifetime: being able to contribute to DOE Office of Science’s biggest project," said Los Alamos SNS Division Leader Don Rej. "The excitement of working on big projects like this one comes from solving a seemingly endless string of insoluble problems, and solving them within budget and schedule constraints."

Because of their lack of charge, neutrons have a superior ability to penetrate materials. Researchers can determine a material’s molecular structure by analyzing the way the neutrons bounce, or scatter, after striking atoms within the structure. Using computational methods and state of the art instruments, researchers will better understand the molecular reasons behind the materials’ properties, which even with existing resources has resulted in the development of superior materials.

The SNS will produce neutrons for materials, biological and other scientific research by sending a high-energy beam of protons down a 1,000-foot linear accelerator to ultimately strike a mercury target, which will "spall" neutrons that are directed to the host of analytical instruments. "The warm linac commissioning is significant because it verifies the performance of the entire warm linac and ensures successful operation of the entire facility," said SNS Accelerator Systems Division Director Norbert Holtkamp. "Testing of the cold linac components is time critical to allow for the transition of the tests from Jefferson Lab to ORNL, which is a major step toward the transition from construction to operation."

The SNS will increase the number of neutrons available to researchers nearly tenfold, providing clearer images of molecular structures. Combined with ORNL’s High Flux Isotope Reactor, the SNS will represent the world’s foremost facility for neutron scattering analysis, a technique pioneered at ORNL shortly after World War II.

In addition to Los Alamos and Jefferson Lab, four other national laboratories collaborate on the DOE Office of Science project: Oak Ridge, Argonne, Lawrence Berkeley and Brookhaven. Berkeley Lab has completed the "front end," where the proton beam is initially generated. Brookhaven has responsibility for the SNS’s accumulator ring, a stage between the linac and target. Argonne leads the design of the facility’s scientific instruments. ORNL is responsible for the target and will be responsible for operating the SNS.

When completed in 2006, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>