Optical fibers and a theory of things that go bump in the light

University of California scientists working at Los Alamos National Laboratory have developed a theory describing light pulse dynamics in optical fibers that explains how an interplay of noise, line imperfections and pulse collisions lead to the deterioration of information in optical fiber lines. The theory will help to enhance the performance necessary for high-speed optical communication systems like video on demand and ultra-broadband Internet, and the research has helped establish a new field of inquiry — the statistical physics of optical communications.

The theory, developed by Los Alamos scientists Michael Chertkov, Yeo-Jin Chung, Ildar Gabitov and Avner Peleg, proposes that an understanding of the physics of signal propagation is important for evaluating and optimizing the performance of optical lines since the natural nonlinearity and disorder of optical fibers results in the corruption of signals traveling through the fiber which, in turn, can lead to information loss. The theory enables scientists to do a comparative analysis of different techniques for the suppression of these information outages.

In addition to the theoretical advance, the team developed, and subsequently patented, a new technique called the pinning method that is capable of reducing the negative impact of optical fiber structural disorder and improving high-speed optical fiber system performance.

Besides the Los Alamos scientists, other collaborators include Igor Kolokolov and Vladimir Lebedev from Russia’s Landau Institute and Joshua Soneson from the University of Arizona in Tucson.

Media Contact

Todd Hanson EurekAlert!

More Information:

http://www.lanl.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors