Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini Vims Team Finds That Phoebe May Be Kin To Comets

24.06.2004


Scientists have long doubted that Phoebe came from the same disk of material that formed Saturn and most of its moons. Phoebe has an unusual orbit that is inclined to Saturn’s equator, revolves backward with respect to both Saturn’s rotation and orbital motion, and travels in the opposite direction of Saturn’s other satellites.

Phoebe is widely believed to have wandered past Saturn and been captured by that planet’s mighty gravitational field. Where it wandered from was the question.

"All our evidence leads us to conclude that Phoebe’s surface is made of water ice, water-bearing minerals, carbon dioxide, possible clays and primitive organic chemicals in different locations on the surface," VIMS team member Roger N. Clark of the U.S. Geological Survey in Denver said a few days after the flyby. "We also see spectral signatures of materials that we have not yet identified."



It is clear that the materials in Phoebe’s surface bear little resemblance to the predominantly rocky material found in asteroids in the belt between Mars and Jupiter. The materials that make up Phoebe formed farther out in the solar system, where it is cold enough for them to remain stable.

"One intriguing result of the VIMS measurements is the discovery of possible chemical similarities between the materials on Phoebe and those seen on comets," said VIMS team leader Robert H. Brown of the University of Arizona.

Short period comets are thought to sit among other primitive solar system debris in the Kuiper belt, until tugged by Neptune’s gravity toward the inner solar system. Evidence that Phoebe might be chemically kin to comets strengthens the case that it’s similar to Kuiper Belt Objects.

The VIMS instrument is an imaging spectrometer that produces a special data set called an image cube. It takes an image of an object in many colors simultaneously. An ordinary video camera takes images in three primary colors (red, green, and blue) and combines them to produce images as seen by the human eye. The VIMS instrument takes images in 352 separate colors, spanning a realm of colors far beyond those visible to humans. All materials reflect light in a unique way. So molecules of any element or compound can be identified by the colors they reflect or absorb, their "signature" spectra. The VIMS team knew the basic chemical make-up of Phoebe only a few days after flyby.

That Phoebe likely comes from the Kuiper belt and not from the Mars-Jupiter asteroid belt is another "first" for the Cassini mission, Brown noted. Cassini has become the first spacecraft to flyby a Kuiper belt object, he said.

Cassini flew by Phoebe on June 11. Cassini will conduct a critical 96-minute main-engine burn before going into orbit around Saturn on June 30 (July 1 Universal Time). During Cassini’s planned four-year tour it will conduct 76 orbits around the Saturn system and execute 52 close encounters with seven of Saturn’s 31 known moons.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The VIMS team is based at the University of Arizona in Tucson.

Lori Stiles | UA science news
Further information:
http://www.arizona.edu
http://wwwvims.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>