Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Instrument Gets Breakthrough View of Sun’s Magnetic Halo

01.06.2004


A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere. Steven Tomczyk (NCAR High Altitude Observatory) presented the images on Monday, May 31, at the annual meeting of the American Astronomical Society (AAS) in Denver.


These images show the brightness, magnetic field strength, and Doppler velocity of an erupting solar prominence taken with the Coronal Multi-Channel Polarimeter on March 9, 2004. The images were taken in a wavelength region in the near-Infrared spectrum corresponding to emission from Helium atoms. Positive and negative polarities of magnetic fields are indicated by the yellow and white colors of the middle image, while velocities directed towards and away from the observer are indicated by the blue and red colors of the rightmost figure.



Animations from the coronal multichannel polarimeter, or CoMP, reveal turbulent, high-velocity magnetic features spewing outward from the Sun’s surface. A sample animation can be viewed at the Web site below. The National Science Foundation, NCAR’s primary sponsor, is providing funding for the instrument.

CoMP is expected to provide the best data to date on magnetic structures in the solar corona, the extremely hot halo around the Sun that becomes visible during eclipses. "People have measured coronal magnetism before," says Tomczyk, "but we believe this is the first time it’s being done in a time sequence like this, where you can see an evolving structure. I think we’re making important steps and demonstrating that this technology works."


Data from CoMP will help solar physicists relate magnetism in the corona to features emerging from the Sun, such as prominences and coronal mass ejections. Such features are the sources of "space weather," the solar storms that can disable electric grids and satellites and interfere with radio communications.

"CoMP will deliver measurable benefits to the nation and the global space physics community," says Paul Bellaire, program director for NSF’s solar terrestrial research. "Space weather forecasters around the world provide tailored information to managers and policy makers responsible for the high tech infrastructure supporting our orbiting and Earth-based telecommunications, navigation, and power grid systems. CoMP’s solar corona imaging capability will be a valuable tool for these forecasters, as well as for researchers of the near-Earth space environment, since the Sun is the driving force behind all space weather."

The CoMP data being presented at the AAS meeting were collected during tests in January and March at the National Solar Observatory in Sunspot, New Mexico. Further tests are being conducted this month.

CoMP uses a telescope with a lens roughly eight inches wide to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun, covering much more area than previous instruments. It also collects data far more often than its predecessors—as frequently as a measurement every 15 seconds.

Closer to the Sun’s surface, magnetism has been traced for over a decade by ground- and space-based instruments. These devices infer the magnetic field by measuring several components of visible radiation. Until recently, though, there was little hope of using this technique to analyze magnetism in the Sun’s corona. Although the corona’s temperatures are scorching (as high as 1.8 million degrees Fahrenheit, or 1.0 million degrees Celsius), the corona itself is far too thin to yield a strong signal. However, a new generation of super-sensitive, low-noise infrared sensors made CoMP possible.

The NCAR team also devised a way to take images in two wavelengths of light at the same time. This allows scientists to filter out light scattered by Earth’s atmosphere into the telescope’s field of vision while preserving the faint signal from the corona.

CoMP’s developers hope to pair the instrument with a larger telescope. "Ultimately you want to gather more light," says Tomczyk. "This would give us more detail and allow us to gather data faster, so that both the temporal and spatial resolution could be improved."

Anatta | NCAR
Further information:
http://www.ucar.edu/news/releases/2004/magnetic.shtml

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>