Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in advanced photonics manufacturing

04.03.2004


The need for advanced highly integrated photonic circuits stems from the capacity expansion of telecommunications infrastructures driven by ever-increasing customer demand. Novel design and manufacturing technologies for advanced photonic circuits emerging from PICCO could meet this need.

Ready for mass production

The work of the IST programme-funded project has provided evidence that functional photonic circuits can be created using state-of-the-art deep UV lithography. This technology is at the very forefront of wafer-scale processing, and appears to be a promising approach for high-volume device production. The development has moved photonic crystals from a previous position as scientific curiosities to being serious contenders in the future manufacture of micro-photonic circuitry.



"We’ve established a design process for deep UV lithography that enables us to produce photonic crystals on an eight inch CMOS [complementary metal-oxide semiconductor] line," says project coordinator Thomas Krauss of St Andrews University. "To date all photonics manufacturing has been done using e-beam lithography - we can now produce photonic circuits using deep UV lithography on an eight inch wafer - just like a vinyl disk - in one shot!"

Another objective was to demonstrate low-loss light propagation within waveguides defined by photonic microstructures, using conventional components but up to two orders of magnitude smaller. In principle the less amount of light lost (through scattering, etc.), the easier it is to produce complex circuits.

By calculating this light loss on a ’loss per device’ scale, project researchers were able to improve on conventional technology. Although the loss per centimetre figures were higher, with much smaller devices the total number of centimetres per device is less, so overall the light lost is reduced.

New CAD tool developed

Project participants also wanted to refine existing CAD tools and to develop a method of evaluating alternative circuit designs more easily. The result of this effort was an application called the ’CrystalWave’ design tool. CrystalWave is capable of designing and analysing photonic circuit designs in less that half of the time it would have taken previously, and can convert the results into production solutions that are ready for manufacturing.

The product comprises a layout editor, a Finite Difference Time Domain (FDTD) simulation application that is 2.5 times faster and requires a quarter of the memory of comparable commercial 3D software, and GDS II software to convert the modelled structure directly into a file for lithographic pattern generation. Significantly, all of these applications run on desktop PCs.

Widening market opportunities

According to Krauss, the results of PICCO are a significant contributor to maintaining European research at the forefront of this field, as micro-photonics will play a key role in the telecoms backbone in the longer term. Japanese research in the field predicts that circuits with 10,000 components will be deployed inside the next 10 years; photonic circuitry is the only means of achieving this goal.

PICCO’s success in developing deep UV lithography methods for wafer-scale fabrication of photonic circuits significantly widens the market opportunities for this technology. Bringing deep UV lithography to a mass-production basis lays the foundations for low-cost high-functionality micro-optic components. Such advances can give the optical component companies a substantial competitive advantage.

All of the academic partners involved in the project have been awarded additional funding in order to further develop the photonics research base. In addition a number of patents have been taken out by some of the PICCO partners, further strengthening their position in the photonics market.

PICCO has also directly contributed to the success and growth of the SME Photon Design Ltd. Oxford, UK, which, through its involvement in the project, has been able to gain a foothold for its products in the promising market of CAD tools for high contrast microstructures. The company is now marketing its CrystalWave design tool commercially, taking the company into two new market areas - mask production and the FDTD simulation technique. Equally, the success of PICCO has influenced Pirelli in developing their microphotonics capability via the establishment of a brand new microfabrication laboratory in Milan, Italy.

"There are two main reasons for the success and the world-wide recognition of PICCO," says EC scientific officer Henri Rajbenbach. "The first is that the PICCO partners had a very early understanding that photonics has to exploit synergies with the more traditional micro-electronics technologies such as deep UV lithography. In itself, this is insufficient; the second reason for success is the outstanding contribution of individual young researchers in convincing this silicon community to open one production line to photonics-aficionados for the ultimate realisation of novel devices." "It is my hope that this can develop into a platform to serve the photonic community at large, and contribute to the building of an Optics and Photonics European Research Area. But work still remains. At this stage, these PICCO devices are passive; future work will tell us if this research avenue is also viable for active, light-emitting components," Rajbenbach concludes.

Contact:
Prof Thomas Krauss
Saint Andrews University
School for Physics and Astronomy
North Haugh
St Andrews KY16 9SS
United Kingdom
Tel: +44-1334-463107
Email: tfk@st-andrews.ac.uk
Source: Based on information from PICCO

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62833

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>