Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comets spread Earth-life around galaxy, say scientists

11.02.2004


If comets hitting the Earth could cause ecological disasters, including extinctions of species and climate change, they could also disperse Earth-life to the most distant parts of the Galaxy.

The "splash-back" from a large comet impact could throw material containing micro-organisms out of the planet’s atmosphere, suggest scientists from Cardiff University Centre for Astrobiology.

Although some of this outflowing material might become sterilised by heat and radiation, they believe that a significant fraction would survive. As the Earth and the Solar system go round the centre of the galaxy every 240 million years, this viable bacterial outflow would infect hundreds of millions of nascent planetary systems on the way. Hence, they suggest, the transfer of Earth life across the galaxy is inevitable.



These ideas are discussed in detail in two papers appearing in the current issue of the Monthly Notices of the Royal Astronomical Society.

The authors of the two papers are Professor Chandra Wickramasinghe and Dr Max Wallis, of the Cardiff Centre for Astrobiology, and Professor Bill Napier, an astronomer at Armagh Observatory and an Honorary Professor at Cardiff University.

Interstellar routes for transmission of micro-organisms supports the view that life may not have originated on Earth but arrived from elsewhere, strengthening the "panspermia theory" that Professor Wickramasinghe and the late Sir Fred Hoyle had been developing since 1974.

It is known that boulders and other debris may be thrown from the Earth into interplanetary space. Professor Napier finds that collisions with interplanetary dust will quickly erode the ejected boulders to much smaller fragments and that these tiny, life-bearing fragments may be driven out of the solar system by the pressure of sunlight in a few years.

The solar system could, therefore, be surrounded by an expanding ’biodisc’, 30 or more light years across, of dormant microbes preserved inside tiny rock fragments. In the course of Earth history there may have been a few dozen close encounters with star-forming nebulae, during which microbes might be injected directly into young planetary systems.

If planets capable of sustaining life are sufficiently common in the Galaxy, the Cardiff based scientists conclude that this mechanism could have infected over 10,000 million of them during the lifetime of our Galaxy.

Dr Wallis and Professor Wickramasinghe have also identified another potential delivery route. They point out that fertile Earth ejecta would, on impact, bury themselves in the radiation-shielded surface layers of frozen comets. A belt of such comets, the Edgeworth-Kuiper belt, lies beyond the planetary system. This belt gradually leaks comets into interstellar space, some of which will eventually reach proto-planetary discs and star-forming nebulae. There they are destroyed by collisions and erosion, releasing any trapped micro-organisms and seeding the formative planetary systems.


Further information:

Professor Chandra Wickramasinghe,
Centre for Astrobiology,
Cardiff University.
Tel.: 44-292-087-4201;
292-075-2146;
077-838-9243;
Email: Wickramasinghe@Cardiff.ac.uk;

Andrew Weltch | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
12.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
12.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>