Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crucial moments on the way to Mars

03.12.2003


Mars Express, ESA’s first probe to Mars, still has some challenges to face.



The spacecraft has successfully come through its first power test after the gigantic solar flare on 28 October.

Since 17 November the on-board software has been ’frozen’ after several updates and the spacecraft is now quietly proceeding to its destination. The next major task, starting on 19 December, will be to safely release the Beagle 2 lander.


Separation

To deliver Beagle 2 where planned, Mars Express has been put on a collision course with Mars, since Beagle 2 does not have a propulsion system of its own and must therefore be aimed precisely at its destination.

Intense activity will begin six days before the arrival at Mars on 25 December with the release of Beagle 2. The orbiter will follow Beagle 2 for a while until, three days before arrival at Mars, ground controllers must make it change trajectory to avoid crashing onto the planet.

This will be the first time that an orbiter delivers a lander without its own propulsion onto a planet and attempts orbit insertion immediately afterwards.

Orbit insertion

The spacecraft speed will be reduced from about 11 kilometres per second to 9 kilometres per second. At that speed, the planet’s gravitational field will be enough to ‘capture’ Mars Express and put it into Martian orbit.

Several manoeuvres will follow to set the spacecraft into its final operational orbit. This orbit is a highly elliptical polar orbit, taking Mars Express as close as 260 kilometres from the Martian surface, and out to more than 11 000 kilometres away at its furthest from the planet.

This is another crucial moment, as it is the first time after the launch that the orbiter’s propulsion system comes into action. On top of this, the deployment of the radar booms will take place – one of the most critical instrument activities.

Landing

The landing itself is another very complicated and challenging operation. Beagle 2 will enter the Martian atmosphere at 20 000 kilometres per hour, but friction with the thin atmosphere will slow it down. Once its speed has decreased to about 1600 kilometres per hour, two parachutes will be deployed in sequence.

Finally, large, gas-filled bags will inflate to protect the lander as it bounces on the surface. Once Beagle 2 comes to a halt, the bags are ejected and the lander can open up and start operating.

Any one of these operations could go wrong. An incorrect alignment of the lander could mean it burns up in the atmosphere. The parachutes could fail to deploy, plunging Beagle 2 into the surface at great speed. The balloons could become detached, or get punctured, again possibly causing Beagle 2 to crash.

If the lander does not land on the planned spot, then this is less serious. The landing area is not one ‘spot’ but a large ‘ellipsis’, 300 kilometres long and 100 kilometres wide.

It has been calculated taking into account the density of the Martian atmosphere, the winds and many other factors. So the risk of missing the landing site is very small. If the winds are stronger than calculated, for instance, they may ‘push’ Beagle 2 a little further away, but still within the selected area.

Top-class science

On the orbiter, if one or more of the instruments fail, then the mission could still carry on. All seven instruments on board are designed to work independently. So even some instruments fail, it would still be possible to perform top-class science.

Past missions to Mars have been lost due to a variety of problems, ranging from trivial errors in calculations to system problems. Errors can always happen, but all aspects of the Mars Express mission have been tested as much as possible to be confident that there will be no errors due to trivial mistakes. Mars Express has been developed in a record-breaking time, but there have been no compromises in testing.

Irina Bruckner | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEM5Z0UZJND_0.html

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>