Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicist devises way to observe protein folding

09.10.2003


Physicists are getting more involved in the fight against diseases by studying the folding of proteins, which they hope will eventually lead to the development of new drugs. Illnesses such as Alzheimer’s disease and even some cancers are the result of protein folding that has gone awry. Since proteins in the body perform different functions according to their shape, the folding process is considered a very important area of study.



Everett Lipman, a new assistant professor of physics at the University of California, Santa Barbara, recently co-authored an article in the journal Science, describing an innovative study of how to "see" proteins as they fold, the result of experiments performed with co-workers at the National Institutes of Health.

The machinery of life arises from interactions between protein molecules, whose functions depend on the three-dimensional shapes into which they fold, said Lipman. Although proteins are composed of just 20 different building blocks (the amino acids), the process by which a given sequence of these components adopts its unique structure is complex and poorly understood. Folding proteins are too small to view with a microscope, so the researchers used a method called Forster Resonance Energy Transfer, or FRET, to study them. Using a microfabricated silicon device and a microfluidic mixing technique, they were able to observe single protein molecules at various times after folding was triggered.


Two small molecules of fluorescent dye (red and green) were applied to amino acids in the protein. When the green dye was excited by a laser, it either emitted green light or transferred the energy to the red dye, causing it to light up. The green dye is a photon donor and the red dye is a photon acceptor. If the two dyes are close together, more red is emitted as the energy is transferred easily to the red. If they are far apart, more green light is emitted. The fraction of red counts shows how efficient the energy transfer is, which shows how close the ends of the molecule are to each other. By taking a sequence of measurements as the protein folds up, scientists can get a "picture" of the folding.

The group was the first to perform these single molecule measurements in microfluidic mixtures. "Once we have more understanding of the folding process, it will fill in a huge gap in our knowledge of how biological systems work," said Lipman. "However it will be a long time before this knowledge can be applied."

Lipman explained, "The fantastic advances in biology during the last century have brought us to the point where we have working knowledge of many fundamental processes. There remain, however, numerous details and enormous complexity of function and interaction that we have yet to comprehend. It has been the case in the past that the most precise information about biomolecular machinery has been uncovered using techniques of experimental physics, such as magnetic resonance and x-ray crystallography. As we progress toward understanding proteins and nucleic acids as complex physical systems, this will no doubt remain true."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>