Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC-lead team helps to identify oldest planet in universe

11.07.2003


An international research team co-led by Prof. Harvey Richer of the University of British Columbia today announced that it has confirmed the existence of the universe’s oldest known and farthest planet.



The findings end a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The un-named planet is 2.5 times the mass of our solar system’s largest planet, Jupiter. Its existence provides evidence that the universe’s first planets were formed rapidly, within a billion years of the Big Bang.

"This is tremendously exciting and certainly suggests that planets are probably more common that we had suspected," says Prof. Harvey Richer who announced the findings at a press conference held today at NASA headquarters in Washington, D.C.


The Jupiter-sized planet formed around a sun-like star 13 billion years ago. The ancient planet has had a remarkable life. When it was born it probably orbited its youthful sun at approximately the same distance Jupiter is from our sun. It has survived blistering ultraviolet radiation, supernova explosions and violent shockwaves.

Located near the core of an ancient star cluster 5,600 light-years away, it now orbits a pair of burned-out stars. One of the stars is observed as a pulsar by radio telescopes, but the other had not been seen until now. The research team used data from NASA’s Hubble Space Telescope to precisely measure the second star, and this let them nail down the properties of the planet as well.

The team’s research suggests that the planet is likely a gas giant, without a solid surface like the Earth. Because it was formed so early in the life of the universe it probably doesn’t have great quantities of elements such as carbon and oxygen. For these reasons, it’s unlikely the planet could support life.
Richer says that in the current model of planetary formation, planets evolve out of small collections of rocks (called planetesimals) which come together and become massive enough to gravitationally attract gas. The newly confirmed planet was formed so early in the history of the universe that its gas was still very metal-poor (and could not conceivably form rocks). This suggests that direct gravitational collapse of gas was its formation scenario so planets could have been forming continuously since the universe was very young.
Other members of the research team include Ingrid Stairs, a radio astronomer at UBC, Brad Hansen of UCLA, Steinn Sigurdsson of Penn State University, and Stephen Thorsett of UCSC.

Richer’s work is supported by two of Canada’s most prestigious granting agencies: The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Council.
The results of the team’s research are to be published in the journal Science on July 11. Electronic images and additional information are available at

Michelle Cook | University of British Columbia
Further information:
http://www.publicaffairs.ubc.ca/media/releases/2003/mr-03-67.html
http://hubblesite.org/news/2003/19.

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>