Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gamma-ray burst bonanza

25.03.2003


ESA’s Integral satellite is detecting gamma-ray bursts at a rate of nearly one per day, establishing itself as a key player in the hunt for these enigmatic explosions.



Launched in October 2002, Integral has just captured four bursts in the last four months right in the middle of its field of view. Such precision observations are providing scientists with a remarkable view of gamma-ray bursts, which occur randomly, fade within seconds, and yet shine with the intensity of millions upon millions of Suns.

"We made Integral to study supernovae, black holes, and neutron stars, yet already we see how this versatile satellite can contribute greatly to the field of gamma-ray bursts," says Chris Winkler, Integral Project Scientist.


Gamma-ray bursts are distant explosions of unknown origin. Scientists say that these bursts signal the birth of a brand new black hole, either through the death of a massive star or through the merger of two neutron stars or black holes. The bursts fade within seconds, never to appear in the same place twice, so scientists have been hard-pressed to study the bursts in detail.

Integral, with its four main instruments, helps locate bursts for follow-up study in two primary ways. The anti-coincidence system of one of its instruments (which usually helps eliminate background noise) can detect a gamma-ray burst almost anywhere in the sky and does so about every day.

Integral shares this information with other gamma-ray detectors that comprise the Interplanetary Network. Together, these simple detectors, which are located on spacecraft across the Solar System, pinpoint the location of a burst through triangulation. The process takes a little time, but within a few days, scientists have enough information to find the gamma-ray burst afterglow and study it.

About once a month, however, a gamma-ray burst goes off within Integral’s field of view. Integral has detected four bursts this way dead on. The most recent burst (GRB 030227) triggered very many follow-up observations. Integral can provide a unique perspective for those gamma-ray bursts caught directly in its field of view because it can view the bursts rapidly with four instruments. These instruments are an imager, a spectrometer, an X-ray monitor, and an optical camera. All of them observe the same region of the sky simultaneously.

The Integral team expects the satellite’s capability for detecting, locating, and relaying information about gamma-ray bursts will improve markedly in the coming months.

Integral team members discuss their gamma-ray burst findings so far in a press conference on 24 March 2003 at a meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec, Canada.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaCP/SEMIVX8YFDD_FeatureWeek_0.html

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>