Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto study charts new realm of physics

20.03.2003


By constructing artificial materials that break long-standing rules of nature, a University of Toronto researcher has developed a flat lens that could significantly enhance the resolution of imaged objects. This, in turn, could lead to smaller and more effective antennas and devices for cell phones, increased space for data storage on CD-ROMs and more complex electronic circuits.



"This is new physics," says George Eleftheriades, a U of T professor specializing in electromagnetic technology at the Edward S. Rogers Sr. Department of Electrical and Computer Engineering and senior author of an article in the March 24 issue of Applied Physics Letters. "These findings provide an opportunity to resolve details in an object smaller than a wavelength."

The team works in the rapidly emerging field of metamaterials - artificially created substances with properties not found in nature. Under normal electromagnetic conditions, light passing through a flat lens will diverge; light passing through a lens made of metamaterials, however, will bend the "wrong" way and become focused.


Their study reveals that when evanescent waves - weak but important waves that lose strength quickly after leaving their source - are directed through their flat metamaterial lens, these waves are amplified. At the same time, the lens corrects the phase of the waves by focusing the diverging waves into a beam. Metamaterial lenses, when constructed at optical frequencies, could be used to engineer the next generation of electronic devices at the nanometre scale, says Eleftheriades.


CONTACT: Professor George Eleftheriades, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 416-946-3564, gelefth@waves.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca


Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Physics and Astronomy:

nachricht Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
13.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

nachricht Robust high-performance data storage through magnetic anisotropy
13.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Green is more than skin-deep for hundreds of frog species

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>