Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystals on a ball

14.03.2003


Researchers attack 100-year-old puzzle, learn how a single layer of particles can pack on the surface of a sphere

ARLINGTON, Va. - In a discovery that is likely to impact fields as diverse as medicine and nanomanufacture, researchers have determined how nature arranges charged particles in a thin layer around a sphere. The leap forward in understanding this theoretical problem may help reveal structural chinks in the outer armor of viruses and bacteria (revealing potential drug targets) and guide engineers designing new molecules.

On a flat surface, particles that repel each other will arrange themselves to create a stable energy state, eventually settling at vertices within a lattice of identical triangles much like billiard balls at the start of a game.

Yet, for nearly a century, researchers studying spherical structures have known that a flat lattice cannot be simply wrapped around a sphere because the lattice of perfect triangles breaks down. Since as early as 1904, when Nobel prize-winning physicist J.J. Thomson theorized about electron shells in atoms, researchers have wondered what structure the thin web of particles would choose, from among myriad possibilities, if wrapped around a sphere.

In the March 14 issue of the journal Science, researchers describe a major breakthrough in the puzzle, supported by experiments with water droplets and tiny, self-assembling beads. The researchers demonstrate how spherical crystals compensate for the curved surface on which they exist by developing "scars," defects that allow the beads to pack into place.

NSF-supported scientists Mark Bowick of Syracuse University, David Nelson of Harvard University, and Alex Travesset of Iowa State University and Ames National Laboratory designed the study with concepts they had developed earlier.

"The theoretical work from our laboratories, and others, suggested that crystals on a curved surface would pack unusually, in a way not found in flat crystals," said Bowick, although the packing depends upon the size of the crystal relative to the surface particles.

The researchers were joined by experimentalists Andreas Bausch and Michael Nikolaides of Technische Universität München in Germany and Angelo Cacciuto of the FOM Institute for Atomic and Molecular Physics in the Netherlands, along with NSF-supported researcher David Weitz and his research team at Harvard University. With experimentation, the team was able to test, and ultimately support, their models of how spherical crystals form in various natural settings.

"This study’s interplay between theory and experiment reveals fascinating insights," said Daryl Hess, the NSF program officer who oversees support for the project. "This is curiosity driven research - from the structure of biological systems to the venerable old problem framed before quantum mechanics - these findings will likely have impact across many fields of science."

Unlike previous approaches using computer models to determine how the charged particles arrange themselves, the new research involves experimentation, instead targeting the simple defects in the crystal structure and determining how the particles and defects find their most stable arrangement.

To create the spherical crystals, the researchers coaxed polystyrene beads (only one micron in diameter) to congregate around and completely cover tiny balls of water (tens of microns in diameter) suspended in an oily mixture.

The team then used a light microscope to view the spheres and digitally traced images of the crystalline patterns. Whereas a flat crystal pattern would consist of a regular pattern of adjacent, equilateral triangles, the researchers found the triangular pattern of the spherical crystal was disrupted and squeezed due to defects (a bead would have five or seven close neighbors instead of the six it would in a perfect lattice).

"We found that curvature can fundamentally change the arrangement of particles on the surface," said Bowick.

Smaller spheres had twelve isolated defects, but larger spheres showed jagged strings of defects the researchers dubbed scars. The scars are a coalescence of simple defects in the lattice pattern that begin and end within the crystal, unlike similar structures in flat crystals which begin and end at crystal surfaces. The researchers observed that the scars erupt in a predictable way based upon the size of the sphere and consistent with the predictions of their theory.

"These structures are a signature of the curved geometry and do not depend on the details of the particle interactions on the surface," said Bowick. "The scars should appear in any type of spherical packing or crystallization."

In addition to confirmation of the researchers’ approach, the new findings also shed light on how such structures form and persist in nature. Some viruses, such as the monkey cancer virus SV40, and some bacteria have similar spherical structures - knowledge of scar formation may reveal how to target chemical reactions at those sites, potentially leading to treatments for similar pathogens.

The research also sheds light on some of the most prevalent structures in nanoscale science and engineering, the fullerenes. Knowing how defects can arise within nanostructures may help researchers devise better methods to create fullerenes or other large molecules with desirable characteristics.

Josh Chamot | NSF News
Further information:
http://www.physics.iastate.edu/staff/travesset/Collo.htm
http://www.deas.harvard.edu/projects/weitzlab/
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>