Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence for dark energy in the universe

11.11.2002


An international team of astronomers, led by scientists at the University of Manchester have produced new evidence that most of the energy in the Universe is in the form of the mysterious "Dark Energy". The new evidence comes from a 10-year census of the sky for examples of gravitational lenses, which are seen when a galaxy bends the light from a distant quasar to form several images of the same quasar. Linking the number of lenses they found with the latest information on the numbers of galaxies, the scientists have been able to infer that most of the energy in the Universe is likely to be in an invisible, and presently unknown, form.



Dark Energy is closely related to the idea of a Cosmological Constant introduced by Einstein over 80 years ago, but most astronomers, including Einstein himself, have always strongly doubted its reality. However, in the past 5 years several independent groups of astronomers have amassed evidence suggesting that Dark Energy exists and could well dominate the total energy of the Universe.

Dark Energy only affects the properties of the Universe over very large distances. As a result, the observations which are sensitive to its presence, in particular studies of exploding stars in distant galaxies, are all close to the limit of current capabilities. Astronomers have therefore been keen to exploit many different tests and Dr. Ian Browne makes the point that "the new gravitational lens test is based on completely different physical arguments to the previous ones and so provides independent evidence in support of Dark Energy".


When a quasar is gravitationally lensed by an intervening galaxy two or more images of the quasar are produced but they are hard to recognise as the images are less than one thousandth of a degree apart. The team therefore employed several of the world`s most powerful radio telescope arrays to make radio pictures of thousands of distant quasars. Professor Peter Wilkinson points out that "we chose to use radio telescopes for our survey since they can pick out details many times finer than optical ones, even the Hubble Space Telescope". The census showed that about one out of every 700 distant quasars is lensed by a foreground galaxy.

To calculate the fraction of the energy in the Universe which is Dark Energy Manchester`s Dr. Kyu-Hyun Chae combined the gravitational lens statistics with the latest results on the numbers and types of galaxies in the Universe made with optical telescopes. The result which emerged is that around two thirds of the Universe`s energy appears to be Dark Energy. The remaining third is made up of Dark Matter, whose form is presently unknown, and "ordinary" matter which makes up the stars and planets. For both of these forms of matter gravity acts as normal and attracts. In contrast Dark Energy has long-range anti-gravity properties and now appears to be causing the expansion of the universe to accelerate, rather than slow down as would be expected if gravity was the dominant force. While astronomers have no idea about what Dark Energy might be, these new results add to their growing confidence that it is real.

Ian Browne | alfa
Further information:
http://www.jb.man.ac.uk/research/gravlens/class/PRL51301.pdf
http://supernova.lbl.gov/
http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html

More articles from Physics and Astronomy:

nachricht Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films
23.08.2019 | Universität Hamburg

nachricht Building an atomic-scale vacuum trap for spin-polarized electrons
23.08.2019 | University of Hamburg Sonderforschungsbereich 668

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Tracing the evolution of vision

23.08.2019 | Life Sciences

Software for diagnostics and fail-safe operation of robots developed at FEFU

23.08.2019 | Information Technology

Structure of protein nano turbine revealed

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>