Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China becomes a physics powerhouse

01.08.2008
Judged by the astonishing increase in journal papers written by scientists in China, there can be little doubt that China is finding its place as one of the world’s scientific power houses.

Michael Banks, Physics World’s News Editor, quantifies this surge in scientific output from China and asks whether quality matches quantity in August’s Physics World.

Nanoscience, quantum computing and high-temperature superconductivity are three of the cutting-edge areas of physics that have seen particularly large increases. Published journal articles in nanoscience, for example, with at least one co-author based in China, have seen a 10-fold increase since the beginning of the millennium, rising to more than 10,500 in 2007.

China has already overtaken the UK and Germany in the number of physics papers published and is beginning to nip at the heels of the United States. If China’s output continues to increase at its current pace, the country will be publishing more articles in physics - and indeed all of science - than the US by 2012.

Quantity alone however is not enough. The number of times a journal paper is cited by other academics in their own journal papers is often used as a guide to journal papers’ quality. Unfortunately for China, they are currently a long way from the national citation top spot, ranked in 65th for physics, just ahead of Kuwait, with an average of 4.12 citations for each of the papers published.

As China has only just started to publish large volumes of work, it is not a fair reflection. Werner Marx, an information scientist from the Max Planck Institute for Solid State Research in Stuttgart, Germany, who carried out a bibliometric study for the Physics World article, said, “The figure is still quite impressive, and I estimate this will rise substantially in the next few years.”

All indications suggest that China’s propensity for world-leading research is growing. In March this year scientists in Japan first reported a new class of iron-based superconducting material that can conduct electricity without resistance when cooled to below 26 Kelvin (K). Researchers in China quickly picked up the baton and, within a month of the initial Japanese discovery, had boosted the transition temperature at which the material loses all its electrical resistance to 52 K.

Werner Marx said, “China has become a notable factor in the scientific landscape. Usually scientific development in nations does not show such a strong acceleration as we have seen in China, so it will be interesting to see how it responds and develops in the future.”

Also in this issue:

•Airbrushed from history? The 1978 Nobel Prize was awarded to Peter Kapitza for discovering that liquid helium can be a superfluid, but records reveal that two Cambridge researchers - Jack Allen and Donald Misener - made the same discovery at the same time too.

•Claims by researchers in Italy to have detected dark-matter particles - by watching the flashes of light the particles give off when they slam into an underground detector made from sodium iodide - have been controversial for over 10 years. But are they right?

Joseph Winters | alfa
Further information:
http://www.iop.org
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>